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Abstract 

Communicating with a speaker with a different accent can affect one’s own speech. Despite the 

strength of evidence for perception-production transfer in speech, the nature of transfer has 

remained elusive, with variable results regarding the acoustic properties that transfer between 

speakers and the characteristics of the speakers who exhibit transfer. The current study 

investigates perception-production transfer through the lens of statistical learning across passive 

exposure to speech. Participants experienced a short sequence of acoustically variable minimal 

pair (beer/pier) utterances conveying either an accent or typical American English acoustics, 

categorized a perceptually ambiguous test stimulus, and then repeated the test stimulus aloud. 

In the Canonical condition, /b/-/p/ fundamental frequency (F0) and voice onset time (VOT) 

covaried according to typical English patterns. In the Reverse condition, the F0xVOT relationship 

reversed to create an ’accent’ with speech input regularities atypical of American English. 

Replicating prior studies, F0 played less of a role in perceptual speech categorization in Reverse 

compared to Canonical statistical contexts. Critically, this down-weighting transferred to 

production, with systematic down-weighting of F0 in listeners’ own speech productions in Reverse 

compared to Canonical contexts that was robust across male and female participants. Thus, the 

mapping of acoustics to speech categories is rapidly adjusted by short-term statistical learning 

across passive listening and these adjustments transfer to influence listeners’ own speech 

productions. 

 

Keywords: Statistical Learning, Speech Perception, Speech Production, Phonetic Cue 

Weighting, Phonetic Convergence, Auditory Word Repetition  
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The close interaction of speech perception and production is undeniable. Perception of one’s own 

speech influences speech production (e.g., Guenther, 1994; Bohland, Bullock, & Guenther, 2010). 

For example, altering speech acoustics and feeding speech back to a talker with minimal delay 

results in rapid compensatory alterations to productions that are predictable, replicable, and well-

accounted for by neurobiologically plausible models of speech production (e.g., Guenther, 2016; 

Houde & Jordan, 1998).  

Similarly, perception of another talker’s speech can influence production. Talkers imitate 

sublexical aspects of perceived speech in speech shadowing tasks (Fowler et al. 2003; Goldinger 

1998; Shockley et al. 2004) and phonetically converge to become more similar to a conversation 

partner (Pardo et al. 2017). However, results are variable and hard to predict. Shadowers imitate 

lengthened voice onset times (VOT), but not shortened VOTs (Lindsay et al. 2021; Nielsen 2011; 

but see also Schertz & Pacquette-Smith, 2023). Phonetic convergence occurs only for some 

utterances or some acoustic dimensions, but not others (Pardo et al., 2013). Talkers may 

converge across some dimensions but diverge on others (Bourhis & Giles 1977; Earnshaw 2021; 

Heath 2015), making it difficult to predict which articulatory-phonetic dimensions will be influenced 

(Ostrand & Chodroff, 2021). Phonetic convergence is also variable across talkers’ sex (Pardo et 

al., 2017), with some studies reporting greater convergence among female participants (Namy et 

al., 2002), others among males (Pardo, 2006; Pardo et al., 2010), or more complicated male-

female patterns of convergence (Miller et al., 2010; Pardo et al., 2017). In sum, the direction and 

magnitude of changes in speech production driven by perceived speech are dependent on 

multiple contributors (Pardo 2006, Babel 2010) likely to include social and contextual factors 

(Bourhis & Giles, 1977; Giles, et al. 1991; Pardo 2006). This has made it challenging to 

characterize production-perception interactions fully.  

Some have argued that a better understanding of the cognitive mechanisms linking speech 

perception and production will meet this challenge (Babel, 2012; Pardo, 2022). Here, we propose 

an approach that is novel in two ways: (1) Statistical learning. Instead of investigating phonetic 

convergence at the level of individual words, we manipulate the statistical relationship of two 

acoustic dimensions, fundamental frequency (F0) and voice onset time (VOT) and study the effect 

of perceptual statistical learning across these dimensions on listeners’ own speech. (2) Subtlety 

and implicitness. Acoustic manipulation of the statistical regularities of speech input is barely 

perceptible and devoid of socially discriminating information, since it is carried on the same voice, 

therefore allowing us to investigate the basic perception-production transfer without influence of 

additional (important, but potentially complicating) sociolinguistic factors.   

Our approach builds on the well-studied role of statistical learning in speech perception. 

Dimension-based statistical learning tracks how the effectiveness of acoustic speech dimensions 

in signaling phonetic categories varies as a function of short-term statistical regularities in speech 

input (Idemaru & Holt, 2011, 2014, 2020; Idemaru & Vaughn, 2020; Liu & Holt, 2015; Lehet & 

Holt, 2017; Schertz et al., 2015; Schertz & Claire, 2020; Zhang & Holt, 2018; Zhang, Wu, & Holt, 

2021). This simple paradigm parametrically manipulates acoustic dimensions, for example voice 

onset time (VOT) and fundamental frequency (F0), across a two-dimensional acoustic space to 

create speech stimuli varying across a minimal pair (beer-pier). The paradigm selectively samples 

stimuli to manipulate short-term speech regularities, mimicking common communication 

challenges like encountering a talker with an accent that deviates from local norms. Across 

Exposure stimuli (Figure 1A, B, red) the short-term input statistics either match the typical F0xVOT 

correlation in English (Canonical condition, e.g., with higher F0s and longer VOTs for pier) or 
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introduce a subtle and barely detectable ‘accent’ with a short-term F0xVOT correlation opposite 

of that typically experienced in English (Reverse condition, e.g., lower F0s with longer VOTs for 

pier). 

 
 

Figure 1. Stimulus and Trial Structure. A. Canonical Distribution. B. Reverse Distribution. The Test stimuli 
(blue) have ambiguous VOT and are identical across Canonical and Reverse conditions. C. Trial Structure. 
Exposure phase: Participants listened passively to 8 Exposure stimuli, each paired with a visual stimulus. 
Perceptual Categorization phase: After 600 ms they heard one of two Test stimuli with Low or High F0 and 
categorized it as beer or pier. Repetition phase: they heard the same Test stimulus again and repeated it 
aloud. 

 

Test stimuli are constant across conditions (Figure 1A, B, blue). They have a neutral, perceptually 

ambiguous VOT thereby removing this dominant acoustic dimension from adjudicating category 

identity. But F0 varies across Test stimuli. Therefore, the proportion of Test stimuli categorized 

as beer vs. pier provides a metric of the extent to which F0 is perceptually weighted in 

categorization as a function of experienced short-term speech input regularities (Wu & Holt, 

2022).  

Although the manipulation of short-term input statistics is subtle and unbeknownst to the listeners, 

the Exposure regularity rapidly shifts the perceptual weight of F0 in beer-pier Test stimulus 

categorization (Idemaru & Holt, 2011). Listeners down-weight F0 reliance upon introduction of the 

accent. This effect is fast and robust against the well-known individual differences in perceptual 

weights and the variability with which individuals perceptually weight different acoustic dimensions 

(Kong & Edwards, 2011, 2016; Schertz et al., 2015, 2016). In all, this well-replicated finding (1) 

demonstrates reliable changes in the perceptual system as a function of brief exposure to subtle 

changes in the statistical properties of the acoustic input and (2) establishes a statistical learning 

paradigm as an ideal tool for examining the impact of these changes on speech production. 
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In the current study, we used dimension-based statistical learning to investigate whether 

adjustments to the perceptual space influence speech production in systematic ways. Following 

Hodson and colleagues (2023), participants passively experienced short sequences of beer and 

pier Exposure stimuli sampling Canonical or Reverse distributions followed by one of the two F0-

differentiated Test stimuli. They categorized the Test stimulus as beer or pier, then heard it again 

and repeated it aloud (Figure 1C). If production is rapidly adjusted to the change in the perceptual 

space evoked by passive listening across statistically structured sequences of sound, we predict 

a down-weighting of production F0 in the Reverse (compared to the Canonical) condition. 

Secondarily, we examine both perception and production effects separately in male and female 

participants to assess whether the adjustment is influenced by participant sex. 

Methods 

Participants 

Although previous studies which have used this experimental paradigm have found large effect 
sizes for dimension-based statistical learning in perception, we do not have a prior effect size for 
potential dimension-based statistical learning in production. Assuming an effect size of 0.45 with 
alpha of 0.05 and power of 0.8, in a within-subject design, we would need 41 participants. 
Because a secondary goal of this project is to assess the effect separately in male and female 
participants, we doubled this sample size. To allow for possible attrition, we set the target sample 
size of 45 male and 45 female participants.  

Ninety participants (45 females) were recruited using Prolific (www.prolific.co), an online 
participant enrollment tool. Sex was determined by participants’ responses to the question: “What 
sex were you assigned at birth, such as on an original birth certificate?” In answer to a question 
regarding gender, 45% of participants identified as cisgender female, 48% identified as cisgender 
male, and 7% identified as non-binary. Here, we used the biological variable sex. 

The study was conducted under a protocol approved by the Institutional Review Board at 
Carnegie Mellon University. All participants were adult native-English speakers located within the 
United States, ages 18 to 40 years old (Mage = 28.6, SD = 6 years), and compensated at an hourly 
rate of $10. Following data collection, three (two female) participants were removed due to poor 
quality audio recordings.  

Stimuli 

Acoustic stimuli were based on natural utterances of beer and pier spoken by an adult female 
native English speaker digitally recorded in a sound attenuated booth, as described by Idemaru 
and Holt (2020). All stimuli were derived from two initial recordings, one beer and one pier, chosen 
for their similarity in duration (385 ms) and F0 contour. Following the approach of McMurray and 
Aslin (2005), we identified 15 splice points (~2-3 ms apart, at zero crossings) in both recordings. 
Then, we removed the interval between beer onset and the first splice point and inserted a 
corresponding interval from the pier, creating a new stimulus along the VOT series. Repeating 
this process resulted in a fine-grained series of syllables varying in VOT from beer to pier in 
approximately 2-3 ms steps. From this series, syllables with VOTs of 0, 10, 20, 30, 40, and 50 ms 
served as stimuli. An additional stimulus with -10 ms VOT was created by taking a splice of pre-
voicing from beer and inserting it before the burst of the 0 ms VOT beer.  

http://www.prolific.co/
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Next, we manipulated the fundamental frequency (F0) across the VOT series to create a 2-
dimensional F0xVOT acoustic space, with adjustment of the F0 onset frequency (170-250 Hz in 
10-Hz steps) at vowel onset manipulated manually using Praat 5.3 (Boersma & Weenink, 2017). 
The F0 contour decreased quadratically to 150 Hz at stimulus offset. Stimuli were normalized to 
the same root mean-squared amplitude. 

We sampled three types of stimuli from the F0xVOT acoustic space. Exposure stimuli conveyed 
a specific F0xVOT short-term regularity (Canonical, Reverse) across passive listening (Figure 1C, 
Exposure). They possessed unambiguous VOTs diagnostic of /b/ (-10, 0, 10 ms) and /p/ (30, 40 
,50 ms) and F0 frequencies spanning 170, 180, 190, 240, 250, 260 Hz. The Canonical condition 
stimuli (Figure 1A, red) were sampled to exhibit the typical English F0xVOT relationship 
(Abramson & Lisker 1986) with beer associated with shorter VOT (-10, 0, 10 ms) and lower F0 
(170, 180, 190 Hz) and pier associated with longer VOT (30, 40, 50 ms) and higher F0 (240, 250, 
260 Hz). The Reverse condition stimuli (Figure 1B, red) reversed this F0xVOT correlation; shorter 
VOTs consistent with beer were paired with higher F0s and longer VOTs signaling pier were 
paired with lower F0s. We constructed each trial as a sequence of four beer (short VOT) and four 
pier (long VOT) stimuli randomly selected from either the Canonical or Reverse distributions, and 
randomly ordered with 300-ms inter-stimulus silent intervals (Figure 1C).  

Test stimuli (Figure 1, blue) served as both the probe for perceptual categorization and elicitation 
of speech production in the auditory repetition task. Test stimuli possessed a constant, 
perceptually ambiguous VOT (20 ms, see Idemaru & Holt, 2020) and either a High F0 (250 Hz) 
or a Low F0 (180 Hz) (Figure 1A, B; blue). Two stimuli with unambiguous VOTs and High or Low 
F0s (beer: 0 ms VOT, 180 Hz F0; pier: 40 ms VOT, 250 Hz F0). Forty-eight trials with 
unambiguous test stimuli were included to ensure participants did not perceive only unusual 
sounding probes.  

Procedure 

Online participants recruited via Prolific were automatically directed to the experiment, hosted on 
the online experimental platform Gorilla (www.gorilla.sc, Anwyl-Irvine et al., 2018, 2021). 
Participants were required to use the Chrome browser and all speech was presented in lossless 
FLAC format. Participants first completed consent and a simple demographics survey and then 
underwent a brief psychophysical check for compliance in wearing headphones using the dichotic 
Huggins pitch approach (Milne et al., 2020). Participants who did not pass the headphone check 
did not proceed to the experiment. Subsequently, a microphone check confirmed that participants’ 
browsers and microphones were recording speech utterances. 

The experiment then commenced, expanding the perceptual protocol of Hodson et al. (2023) to 
examine transfer to production. Participants were instructed about the trial structure via written 
instructions. As illustrated in Figure 1C, each trial had three phases: Exposure, Perceptual 
Categorization, and Repetition. In the exposure phase participants passively listened to a 
sequence of 8 Exposure stimuli (4 short VOT <15 ms signaling beer and 4 long VOT >25 ms 
signaling pier, randomly ordered) separated by 300 ms of silence (5900 ms total duration). As 
stimuli played diotically over headphones corresponding clipart images (beer for <15 ms VOT, 
pier for >25 ms VOT) appeared, synchronized to sound onset. The next phase, Perceptual 
Categorization, began with 600 ms of silence. Participants then heard a Test stimulus with 
perceptually ambiguous VOT (20 ms) and either Low (180 Hz) or High (250 Hz) F0 and 
categorized it as beer or pier via a keyboard response guided by onscreen text indicating the 
key/response correspondence as well as a question mark to indicate the need to respond. The 
Repetition phase began immediately after response. Participants heard the same Test stimulus 
and, 300 ms later, saw an image of a microphone that signaled them to repeat the Test stimulus 
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aloud. Participants’ utterances were recorded over their own computer microphone and stored 
digitally as .weba files. 

The Perceptual Categorization and Repetition phases were identical across blocks. Blocks 
differed in the distinctive (Canonical, Reverse) short-term regularities conveyed by the Exposure 
phase. The first block was always Canonical, with subsequent blocks alternating between 
Reverse and Canonical blocks. This resulted in 248 test trials (124 Canonical, 124 Reverse; 
blocks of 40-42 trials) presented across six blocks. Two of the three Canonical blocks were 
composed of 41 trials while the third was composed of 42 trials. A small programming discrepancy 
led to two of the three Reverse blocks having 42 trials whereas the third had 40 trials.  

Among the 248 test trials, 200 trials (100 Canonical, 100 Reverse) presented Ambiguous Test 

stimuli to assay dimension-based statistical learning in perception and its transfer to production. 

The remaining 48 trials (24 Canonical, 24 Reverse) presented Unambiguous stimuli so that 

participants did not perceive only unusual sounding probes. Ambiguous and Unambiguous stimuli 

were randomized within condition (Canonical, Reverse). Participants had 15-sec breaks after 

each 15 trials and between blocks. 

Production F0 Measurements 

We designed custom Praat and R scripts to extract F0 from the speech productions. In Praat 
(version 5.3), “To TextGrid (silences)...” identified and isolated word productions in the 2.5 second 
audio recordings. Then, “To Pitch (ac)” characterized the F0 frequency of first 40 ms of voicing, 
where F0 differences between onset obstruent consonants are typically most pronounced (Lea 
1973; Hombert, Ohala, & Ewan, 1979; Hanson, 2009; Xu & Xu, 2021). After F0 values were log 
transformed, outliers +/- 3 standard deviations relative to a participant’s mean F0 were removed 
from further analyses. Next, z-score normalization on a by-participant basis accounted for F0 
variability across talkers that is impacted by multiple factors, including sex (Titze, 1989). Thus, a 
F0 value of 0 represented the mean F0 for a participant across all productions and values of +/- 
1 corresponded to a standard deviation above and below the mean, respectively. Normalization 
provided a means of aligning F0 variability across participants prior to group analyses.  

Analysis 

 
Statistical analysis involved mixed effects models via the lme4 package (Bates, Mochler, Bolker, 
and Walker, 2015) in R (version 4.1.3, R Core Development Team, 2022). In keeping with 
recommendations of Barr, Levy, Scheepers, and Tily (2013), we strove for including the maximal 
random effects in the models. Most models, however, did not tolerate the maximal random effect 
structure. For consistency, we report the models with random intercept of both subjects and items, 
which were tolerated by all models. The former captures variability among subjects; the latter 
among exposure sequences that changed from trial to trial. To assure that excluding random 
slopes did not radically alter any of the main conclusions, we also report the output of the models 
with the largest random effect structure tolerated by each model in Appendix B. 

For perceptual categorization data, a logit mixed-effects logistic regression model included a 
binary response (beer, pier) as the dependent variable. The model included Condition (Canonical, 
Reverse), Test stimulus F0 (Low F0, High F0), and participant Sex (Male, Female) and their 2- 
and 3-way interactions as fixed effects, and by-subject and by-item random intercepts included. 
For speech production data, a continuous z-score normalized F0 dependent measure allowed for 
a standard (non-logit) linear mixed effects model. Here, too, fixed effects of Condition, Test 
stimulus, Sex and its interactions were modeled, with by-subject and by-items modeled as random 
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effects. Dependent categorical variables were center coded (1 vs -1). P-values were based on 
Satterthwaite approximates using the LmerTest package (version 3.1-3, Kuznetsova, Brockhoff, 
& Christensen, 2016). Analyses collapsed data from the three Canonical blocks and, separately, 
from the three Reverse blocks.  

We conducted the production analyses in two steps: (1) Our first analysis used Test stimulus F0 
to predict production F0. This analysis is parallel to the perceptual analysis and captures the 
whole process, which includes the change to perception as well as changes to production. (2) 
Our second analysis used perceptual responses as the main predictor of production F0. This 
analysis already partials out the contribution of perceptual changes as a function of exposure to 
the Canonical and Reverse distributions, which allows us to isolate the production component of 
transfer. The data, analysis code, and full tables of the results are available at 
https://osf.io/cwg4d/.  

Results 

Perceptual Categorization 
Figure 2 plots categorization responses as a function of Canonical and Reverse short-term 
speech regularities. Table 1 presents the results of the analysis.  
 

 
 

Figure 2. Results of Perceptual Categorization. Percentage of pier responses to High and Low F0 Test 
stimuli in Canonical and Reverse conditions are shown at the group level (A), broken down by Sex (B) and 
broken down by blocks (C). Averages reflect subject means ± SE).  
 

As expected, there was a main effect of Test stimulus F0, such that the Test stimulus with the 
High F0 was more likely to be labeled as pier (z = 9.94, p < .001). Crucially, as in prior studies of 
dimension-based statistical learning, there was a significant interaction of Test stimulus F0 and 
Condition (z = 16.09, p < .001). Passive exposure to short-term speech input regularities impacted 
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the effectiveness of F0 in signaling beer-pier category identity. Neither the main effect of Sex, nor 
its interaction with Condition was significant1. There was, however, a significant three-way 
interaction between Sex, Condition and Test stimulus F0 (z = 6.39, p < .001). To better understand 
the nature of this interaction, we conducted separate tests on Male and Female participants. The 
results showed significant Condition by Test stimulus F0 interactions for both Male and Female 
participants, with a larger coefficient for Female participants (ꞵ = 1.22, SE = .09, z = 14.19, p < 
.001; ꞵ = 1.49, SE = .08, z = 17.54, p < .001, for Males and Females respectively).  

Table 1 Regression Table – Perception 

Predictor β SE z p 

(Intercept) -0.23 0.10 -2.26 .024 

Condition 0.13 0.08 1.48 .139 

Test cue F0 0.84 0.08 9.94 <.001 

Sex -0.05 0.06 -0.83 .406 

Condition:Test cue F0 1.36 0.08 16.09 <.001 

Condition:Sex -0.04 0.02 -1.68 .094 

Test cue F0:Sex -0.01 0.02 -0.47 .635 

Condition:Test cue F0:Sex 0.14 0.02 6.39 <.001 

Note: Reference levels are condition (Reverse), Target stimulus F0 (Low F0), Sex (Male) 

 
In summary, listeners relied on F0 to guide decisions about speech category identity when local 
speech input regularities conformed to English norms. When regularities shifted to create an 
‘accent’, F0 was much less effective in signaling the speech categories. This replicates Hodson 
et al. (2023), who first demonstrated that passive exposure to speech elicits dimension-based 
statistical learning. Adding to that result, we also showed that the effect is robust in both male and 
female participants. Next, we examine the influence of this perceptual statistical learning on 
production.  

Repetition (Speech Production)  

Figure 3 plots z-score-normalized speech production F0s elicited in response to High and Low F0 
Test stimuli in the context of Canonical and Reverse short-term speech regularities. As described 
under Analyses, two models were run on these data. The first model predicted changes to 
production F0 as a function of Test Stimulus F0. Table 2 presents this model’s results. As in 
perceptual categorization, there was a significant effect of Test stimulus F0, such that the High 
F0 Test stimulus prompted a larger magnitude normalized F0 than the Low F0 test stimulus (t = 
15.36, p < .001). There was also a significant effect of Condition, such that productions made in 
the Canonical Condition exhibited a higher F0 than the Reverse Condition (t = 2.27, p = .026). 
The interaction between Test Stimuli F0 and Condition was significant (t = 19.02, p < .001) in a 
manner consistent with transfer of perceptual statistical learning to production.  
 

 
1 The interaction between Sex and Condition was significant in a mixed effects model with a random slope of Test 
Cue F0 by Subject (see Table B1); however, post-hoc analyses run separately in males and females revealed no 
significant effect of Condition in either group (z = 0.86, p = .391, z = 0.29, p = .769, for Males and Females, 
respectively). 
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Figure 3. Results of Repetition. F0 values in speech production by Test stimulus F0 are shown at the 
group level (A), broken down by Sex (B) and broken down by blocks (C). Averages reflect subject means 
± SE). 
 

There was no significant main effect of Sex, though there was a significant 3-way interaction 
among Sex, Condition and Test stimulus F0 (t = 3.50, p = < .001). Separate post-hoc tests on 
Male and Female data revealed a significant interaction between Condition and Test stimulus F0 
for both groups, with a larger coefficient for Female participants (ꞵ = 0.19, SE = 0.02, t = 12.87, p 
< .001; ꞵ = 0.25, SE = 0.01, t = 20.07, p < .001, for Males and Females, respectively). 
 

Table 2 Regression Table – Production (by Test stimulus F0) 

Predictor β SE t p 

(Intercept) 0.01 0.01 0.50 .617 

Condition 0.03 0.01 2.27 .026 

Test stimulus F0 0.18 0.01 15.36 < .001 

Sex 0.002 0.01 0.31 .760 

Condition:Test stimulus F0 0.22 0.01 19.02 < .001 

Condition:Sex -0.01 0.01 -1.28 .199 

Test stimulus F0:Sex 0.04 0.01 4.84 < .001 

Condition:Test stimulus F0:Sex 0.03 0.01 3.50 < .001 

Note: Reference levels are condition (Reverse), Target stimulus F0 (Low F0), Sex (Male) 

 

These results suggest that production is affected by the manipulation of short-term regularities in 
speech perceived passively. However, it is possible that the results are driven by changes to 
perception and not production. Our second analysis addresses this issue by modeling changes 
to production F0 as a function of participants’ perceptual choices, thus removing the variance due 
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to the influence of Test Cue F0 on perception. Figure 4 shows production F0 changes based on 
perceptual responses and Table 3 summarized the results of this analysis.  

 

Figure 4. Results of Repetition. F0 values in speech production by perceptual responses are shown at 
the group level (A), broken down by Sex (B) and broken down by blocks (C). Averages reflect subject 
means ± SE). 

 
As seen in Figure 4, when the contribution of perception is removed, the effect size clearly 
diminishes. The question is: Is there a significant production effect beyond those captured by 
perception? The results of the analysis suggest that there is. In addition to the main effect of 
Perceptual Response, there was a significant interaction between Perceptual Response and 
Condition (t = -8.75, p < .001), indicating within-word changes to F0 in productions as a function 
of Condition. A significant interaction between Perceptual Response and Sex (ꞵ = -0.02, SE = 
.01, t = -3.36, p = .001) was evident, indicating within-word changes to F0 as a function of Sex2. 
Moreover, there was a significant 3-way interaction among Sex, Condition, and Perceptual 
Response (t= -4.62, p<.001) with post-hoc tests revealing significant effects in both sexes, with a 
greater magnitude in Females (ꞵ = -0.04, SE = .01, t = -3.61, p < .001; ꞵ = -0.09, SE = 0.01, t = -
8.57, p < .001, for Males and Females, respectively). This provides evidence of true transfer of 
perceptual statistical learning to production. This analysis shows that evidence of transfer of 
statistical learning to speech production is present even when the perceptual heterogeneity 
expected of F0-differentiated stimuli in the Reverse condition is factored out. For readers 
interested in changes to VOT, we have reported a series of analyses including that variable in 
Appendix A. 
 
 
 

 

 
2 The interaction between Perceptual Response and Sex was not significant in a mixed effects that included 
random slopes for both Condition and Perceptual Response by Subject (Table B3). 
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Table 3 Regression Table – Production (by Perceptual Response) 

Predictor β SE t p 

(Intercept) 0.04 0.01 4.32 <.001 

Condition 0.01 0.01 0.77 .443 

Perceptual Response -0.44 0.01 -58.32 <.001 

Sex 0.01 0.01 0.97 .334 

Condition:Perceptual Response -0.07 0.01 -8.75 <.001 

Condition:Sex -0.005 0.01 -0.65 .513 

Perceptual Response:Sex -0.02 0.01 -3.36 .001 

Condition:Perceptual Response:Sex -0.03 0.01 -4.62 <.001 

Note: Reference levels are Condition (Reverse), Perceptual Response (Pier), Sex (Male) 

Discussion 
 

The findings of this study show that subtle acoustic regularities experienced in listening to a voice 

impact the details of our own speech. The influence of perceptual statistical learning on speech 

production is rapid, can result from passive listening, and impacts sublexical aspects of speech 

production in both male and female participants. The transfer we observe cannot be accounted 

for by mimicry of speech acoustics. Mimicry would predict consistent F0 patterns across 

conditions, since the speech tokens that elicited speech productions were constant across the 

experiment. Putting mimicry aside, the transfer of F0 down-weighting in an auditory repetition task 

can come from two sources: changes to the perception of the stimulus and/or changes to 

production. Comparison between the first and subsequent analyses allows us to segregate the 

contribution of each source. Hypothetically the down-weighting of F0 differences in productions 

in the Reverse condition might have arisen solely from perception, without transfer to speech 

production. If participants were to utter beer and pier with English-consistent F0 each time they 

heard a High-F0 or Low-F0 target then the overall F0 difference in the Reverse condition might 

be diminished relative to the Canonical condition simply because perceptual down-weighting 

leads to greater inhomogeneity in the proportion of beer versus pier percepts in the Reverse, 

compared to the Canonical, condition. This inhomogeneity would mean that High- and Low-F0 

targets elicit a mix of high and low F0 productions entirely due to perception, without any transfer 

of learning to production. 

Our first analysis, conditioned on Test stimulus F0, shows the combined perception plus 

production effect of transfer to be of a large effect size. A second analysis conditioning production 

F0 according to beer versus pier categorization instead of test stimulus acoustics removes the 

contribution of perception and shows smaller, albeit persistent, F0 down-weighting in Reverse 

condition productions. Together, the analyses suggest that although there is a sizable perceptual 

contribution, there is also a unique contribution of transfer of the effects of statistical learning to 

production. The fact that this influence differs in magnitude across analyses conditioned on 

perceptual categorization versus input acoustics also makes an important point: the long-term 

norms of speech production are not overwritten by the more subtle influences of rapid statistical 

learning evident across short-term input. This is consistent with the demonstration that auditory 

repetition of familiar words is largely lexical (Dell et al., 2013; Nozari & Dell, 2013; Nozari et al., 

2010). 
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These findings align with positive reports of phonetic convergence on F0 in shadowing tasks 

(Garnier et al., 2013; Mantell & Pfordresher, 2013, Postma-Nilsenová & Postma, 2013; Sato et 

al., 2013; Wisniewski et al., 2013). At the same time, they also illustrate how our statistical learning 

approach can provide a solution to the challenges of capturing and characterizing phonetic 

convergence. One advantage is dimension selection. A priori predictions about the dimensions 

expected to exhibit phonetic convergence have proven challenging in the phonetic convergence 

literature, as beautifully demonstrated by an exhaustive search across more than 300 acoustic-

phonetic features (Ostrand & Chodroff, 2021). Our statistical learning approach provides a priori 

predictions of the dimension impacted by convergence (Wu & Holt, 2022), eliminating the need 

to selectively – or exhaustively – sample dimensions across which to examine the nature of 

transfer.  

A second advantage is the ability to make directional predictions. Dimension-based statistical 

learning elicits predictable, directional effects on perception. When short-term speech input 

provides robust information (here, VOT) to indicate category identity, secondary dimensions that 

depart from long-term norms of these categories (as, here, for F0 in Reverse condition) are down-

weighted in their influence on perceptual categorization (Wu & Holt, 2022). This has proven to be 

the case across consonants (Idemaru & Holt, 2011), vowels (Liu & Holt, 2015), and also prosodic 

emphasis (Jasmin et al., 2022) categories. This is important in that it emphasizes that the transfer 

to production is not simply convergence in the sense of imitation. Rather, directional sublexical 

adjustments in the perceptual system are carried over to the production system. As a result, we 

would not expect all changes to the acoustics of speech to transfer to production (see, e.g., our 

VOT analysis). This, in turn, may help to explain why phonetic convergence studies often yield 

inconsistent reports.  

A third advantage is the ability to set aside sociolinguistic factors. Our manipulation of acoustic 

F0 was barely perceptible, and devoid of socially discriminating information because the voice 

was constant across conditions. With this approach, we observed transfer in both male and 

female participants. The consistency of our findings across sex may have been supported by our 

approach, which allowed us to eliminate sociolinguistic factors that may contribute to the variability 

of findings reported in the phonetic convergence literature (Pardo et al., 2017). A sizeable 

literature now exists detailing social and contextual factors eliciting convergence, such as talker 

attractiveness (Babel, 2012), conversational topic (Walker, 2014), and even cultural primes 

(Hurring et al., 2022; Walker et al., 2019). Further understanding of how these factors influence 

convergence will benefit from an understanding of the cognitive mechanisms of transfer (Pardo, 

2022). Here, we put forward one such an account, in the framework of statistical learning wherein 

several computational approaches to the perceptual effects have been proffered (Harmon et al., 

2019; Kleinschmidt & Jaeger, 2015; Liu & Holt, 2015; Wu, 2020).  

At the broadest level, the results demonstrate that subtle statistical regularities experienced in 

passive listening to another talker’s speech can transfer to influence one’s own speech 

production. Statistical learning involving short-term regularities in perceived speech impacts 

sublexical aspects of speech production in a predictable manner, even when the speech targets 

that elicit production are held constant to prevent mimicry. In sum, by yielding specific a priori 

predictions of the sublexical aspects of speech expected to be impacted by transfer of statistical 

learning, dimension-based statistical learning across passive exposure to speech provides a 

valuable new framework for understanding perception-production transfer.  
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Appendix A  

VOT analysis 

We measured production VOT on each trial using the Deep and Robust VOT annotator (Dr.VOT; 

Shrem, Goldrick, and Keshet, 2019), with post-processing manual inspection. Next, we z-scored 

the VOTs following the by-participant approach described for F0.  

We used VOT to verify that perceptual categorization (beer, pier) responses were followed by 

speech productions that corresponded to the perceptual response (e.g., longer VOTs following 

pier vs. beer responses). Figure A1 shows the raw (1A.A) and z-scored (1A.B) distribution of 

VOTs as a function of beer-pier perceptual responses. Perceptual responses were strongly 

associated with the VOT of subsequent productions (t = -141.94, p < .001) and production VOT 

distributions were not influenced by (Canonical, Reverse) condition (t = -1.51, p = .13, Table A1). 

Point biserial correlation between VOT and perceptual categorization reveals a strong relationship 

that is comparable across Canonical and Reverse conditions (r = 0.74, p < .001 for the Canonical 

condition and r=0.74, p < .001, for the Reverse condition). In sum, participants’ beer-pier 

perceptual responses to Test Stimuli were followed by speech productions possessing VOTs that 

align with these perceptual categories. 

 

Figure A1. Distribution of raw Production VOTs (A) and z-scored VOTs (B) for beer and pier in Canonical 

and Reverse Conditions.   

  



16 
 

 

Table A1 Regression Table – Production VOTs (by Perceptual Response) 

Predictor β SE t p 

(Intercept) 0.05 0.01 4.16 <.001 

Condition -0.01 0.01 -1.51 .130 

Perceptual Response -0.75 0.01 -141.94 <.001 

Condition:Perceptual Response -0.002 0.01 -0.33 .743 

Note: Reference levels are Condition (Reverse), Perceptual Response (Pier) 
 

Given that VOT is well-aligned with the perceptual response we next examined its utility as a 

continuous measure of participants’ intended utterance in testing transfer of statistical learning to 

the weighting of F0 in speech production. We fit a model predicting normalized speech production 

F0 as a function of utterance VOT (a continuous-measure proxy for intended production) and 

condition (Canonical, Reverse). Table A2 shows the predicted interaction (β=-0.02, SE=.01, t=-

2.02, p= .043). The significant interaction replicates the transfer of statistical learning to speech 

production that persists when the F0 of the stimulus eliciting the utterance is factored out, and 

results are examined as a function of a participant’s intended speech production (here assessed 

with VOT, assessed via perceptual response in Figure 4). 

Table A2 Regression Table – Production F0s (by Production VOTs) 

Predictor β SE t p 

(Intercept) 0.01 0.02 0.56 .580 

Condition 0.01 0.02 0.64 .527 

VOT  0.32 0.01 40.33 <.001 

Condition:VOT -0.02 0.01 -2.02 .043 

Note: Reference levels are Condition (Reverse). All VOT measures z-
score normalized within participants 

 
In sum, participants are largely consistent in producing words that correspond to their preceding 

perceptual choices. Transfer of statistical learning to speech production is observed in analyses 

utilizing VOT as a continuous measure of participants’ intended productions.  
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Appendix B 

Mixed effects models with the largest random effect structure 

tolerated by each model 

Mixed effect models presented below share the same fixed effect structure as corresponding 

models in the main manuscript but also include the largest random effect structure tolerated by 

each model. 

 

Table B1 Perceptual Categorization 
Perceptual Response ~ Condition * Test cue F0 * Sex + 
(1 + Test cue F0 | Subject) + (1 | Item) 

Predictor β SE z p 

(Intercept) -0.38 0.13 -2.97 .003 
Condition -0.004 0.10 -0.04 .966 
Test cue F0 1.12 0.17 6.45 <.001 
Sex -0.08 0.08 -0.99 .322 
Condition:Test cue F0 1.70 0.10 16.40 <.001 
Condition:Sex -0.07 0.03 -2.74 .006 
Test cue F0:Sex -0.04 0.14 -0.29 .773 
Condition:Test cue F0:Sex 0.16 0.03 6.13 <.001 

Note: Reference levels are Condition (Reverse), Test cue F0 (LowF0), Sex (Male) 

 

 

Table B2 Repetition (Speech Production by Target Cue F0) 

Random effect structure in presented in Table 2 is already the largest random 
effect structure tolerated by this model. 

 

 

Table B3 Repetition (Speech Production by Perceptual Response) 
Z-scored Production F0 ~ Condition * Perceptual Response * Sex +  
(1 + Perceptual Response + Condition | Subject) + (1 | Item) 

Predictor β SE t p 

(Intercept) 0.04 0.01 3.51 .001 
Condition 0.004 0.01 0.35 .723 
Perceptual Response -0.42 0.03 -16.21 <.001 
Sex 0.01 0.01 0.66 .512 
Condition:Perceptual Response -0.06 0.01 -7.33 <.001 
Condition:Sex -0.001 0.01 -0.13 .898 
Perceptual Response:Sex -0.02 0.03 -0.95 .346 
Condition:Perceptual Response:Sex -0.03 0.01 -4.64 <.001 

Note: Reference levels are Condition (Reverse), Perceptual Response (LowF0), Sex 
(Male) 
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