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Abstract 29 

Research on word production is concerned with the process of turning a thought into motor 30 

movements that produce a word. This has traditionally been studied using two approaches, the 31 

psycholinguistic approach and the motor speech approach, which focus on different parts of the 32 

word production process. In this paper, I will show how highlighting the strengths of these two 33 

approaches, as well as merging them with broader frameworks and theories of action and 34 

cognition, can take language production research in novel directions. In doing so, I will discuss 35 

processes that complement language production, such as how speakers assess whether production 36 

is going smoothly (monitoring), adjust to its difficulties (control), and fix errors (repair). Each 37 

proposal combines what we know about language production with insights from other areas of 38 

cognition. Through these proposals, I will demonstrate the utility and necessity of a closer 39 

integration of broader cognitive frameworks into models of word production, as an important 40 

general direction for future research. 41 
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Word production, monitoring, control, and repair 50 

 51 

Introduction 52 

The study of language production is concerned with how people turn their thoughts into speech 53 

that is executed through motor movements. Historically, word production has been studied using 54 

two approaches: the psycholinguistic approach and the motor speech approach1–3. Generally 55 

speaking, the focus of psycholinguistic models is mapping meaning to sound: How do speakers 56 

retrieve an arbitrary sound pattern (e.g., /kæt/) to refer to the furry pet? Motor speech models, on 57 

the other hand, focus on mapping sound patterns (e.g., /kæt/) to articulatory motor movements3,4. 58 

This difference in focus has caused the two approaches to remain largely separate. Moreover, with 59 

the exception of motor control research, which has heavily influenced motor speech models, 60 

neither approach has, traditionally, made close contact with more general theories of action and 61 

cognition.  62 

Each approach has its strengths. The main strength of the psycholinguistic approach is its broader 63 

view of language production as a process beyond a mere motor act. The emphasis of 64 

psycholinguistic models on semantic knowledge (i.e., concepts) as the starting point of language 65 

production, naturally pushes these models to address key issues such as consequences of semantic 66 

similarity (i.e., overlap in meaning) and mechanisms that select one word among related words 67 

(how do I say cat, and not dog, when talking about the furry pet?). These issues, in turn, provide a 68 

natural bridge to theories of cognitive control, which are concerned with the selection of a response 69 

among competing alternatives, and theories of decision-making, which address the factors that 70 

affect implicit or explicit selection. Motor speech models, on the other hand, have two key 71 
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advantages over the traditional psycholinguistic models of adult language production; they view 72 

the act of production as closely integrated with (a) monitoring and (b) learning. This close 73 

integration of production, monitoring, and learning naturally leads to viewing the language 74 

production system as a goal-oriented, self-organizing system, which adjusts itself to different 75 

situations and task goals, similar to many other cognitive systems5–7. By this, I do not mean to 76 

imply that learning has never been implemented in psycholinguistic models. There are plenty of 77 

models that use learning to explain specific phenomena8–11. However, as will be discussed in the 78 

next section, learning and monitoring are not integral parts of the main psycholinguistic models of 79 

word production.   80 

My goal in the current paper is not to give a comprehensive overview of the models of word 81 

production, which exists elsewhere12–14, but rather to highlight what can be gained by considering 82 

both the psycholinguistic and motor speech approaches and linking them with more general 83 

theories of action and cognition. I will do so by focusing on mechanisms of monitoring, control, 84 

and repair in production. Monitoring assesses whether production is on track to meet the 85 

production goals (e.g., communicating a message). This includes catching errors that may hinder 86 

communication. Control defines operations that help production proceed smoothly toward its 87 

goals. Repair refers to processes that change an utterance (usually an error) to a new utterance. 88 

The discussion of these mechanisms will, in turn, bring out the critical role of learning and decision 89 

making in the production process. Throughout the paper, I will use the word “learning” in its 90 

computational sense of changing the strength of connections between representations in the 91 

production system15. In this sense, learning is contrasted with changes to the activation of 92 

representations without affecting the system’s connections. Note that this definition encompasses 93 

explicit and implicit learning, and has the feature of being more resilient against the passage of 94 
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time and interference from unrelated representations than activation-based dynamics16,17. I will 95 

show that the resulting view offers new perspectives on current hotly debated issues, including the 96 

mechanisms underlying word selection and domain-generality/specificity of control processes that 97 

regulate language production.  98 

Computational models of word production  99 

Figure 1a is an overview of the representations involved in the entire production process3. 100 

Production starts from concepts and selects the appropriate word (lemma) to express that concept. 101 

If the word needs to be inflected (e.g., help → helped), it is morphologically encoded and then sent 102 

for syllabification and phonological encoding, where its abstract metric and sound structure is put 103 

together. Next, it goes through phonetic encoding which prepares it for articulation. Figures 1b and 104 

1c show the rough scope of psycholinguist and motor speech models. Most psycholinguistic 105 

models start with concepts but go no further than phonetic encoding. This is not to say that all 106 

psycholinguistic models have all these layers; rather, to emphasize that they are rarely concerned 107 

with articulatory processes. In contrast, motor speech models usually start with the phonological 108 

form or its equivalent in perceptual space and cover the later stages of production. To lay out the 109 

foundation for discussing monitoring, control, and repair processes that are the focus of this paper, 110 

I will briefly review the main models from the psycholinguistic and motor speech traditions, as 111 

well as one model that has attempted to merge the two. 112 

Within the psycholinguistic tradition, mapping meaning to sound entails at least two distinct 113 

stages1 (Fig. 1b): mapping semantic knowledge (represented as semantic features) to lexical items 114 

(i.e., lexical retrieval) and mapping lexical items to phonology (i.e., phonological encoding). The 115 

first step can be influenced by syntactic demands1,3. The second stage can continue on to phonetic 116 

encoding but this is skipped in many psycholinguistic models18–20. Two main computational 117 
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models in the psycholinguistic tradition are Levelt et al. (1999)3 and Dell (1986)1 and their 118 

subsequent versions (see12,14 for reviews). While the details and scopes of the two models and their 119 

variants differ, they mostly agree on the core representations and the main stages of processing. 120 

Importantly, both models emphasize the co-activation of related representations within each layer 121 

of the production system (e.g., lexical item dog for the target cat; Fig. 1a). Modeling such 122 

coactivation and its consequences has been one of the major strengths of the psycholinguistic 123 

tradition and has fostered several theories including competitive/non-competitive selections and 124 

domain-generality/specificity of cognitive control, which I will unpack in the following 125 

sections8,21–25. In addition, these models have been quite successful in explaining language 126 

impairment after brain damage or aphasia19,20,26,27, capturing the development of word production 127 

abilities in children28,29, and mapping language production processes onto brain regions30–33. 128 

Finally, psycholinguistic models can accommodate different modalities of language production, 129 

including written and typed production34,35. It is worth noting that despite their similarities, the two 130 

main psycholinguistic models differ in one key respect, namely, their assumption regarding 131 

modularity (see Box 1).  132 



7 
 

 133 

 134 

Figure 1. Models of word production. (a) The general architecture of language production from 135 

meaning to sound (adopted from3). (b) The two-step interactive model1. Schematic of spreading 136 

activation for a trial with “cat” as the target. Spreading activation to “cat” and competing 137 

representations are shown in darker and lighter shades of red, respectively. Phonologically related 138 

word “mat” is activated through feedback, and activates its own unique segments through 139 

feedforward connections (dynamic shown in orange). For illustrative purposes, only some 140 

phonetic features and partial feedback are shown. (c) A simplified version of DIVA (adapted from4). 141 

See text for model descriptions. 142 

 143 

 144 
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Box 1. Modularity or interactivity within the language production system 145 

Modularity170 refers to the encapsulation of information within each stage of processing. 146 

Psycholinguistic models agree on the multi-stage nature of word processing (Fig. 1a), but they 147 

differ on the issue of modularity. This debate concerns two phenomena, cascading and interactivity. 148 

In a system with cascading of activation, information from a higher layer leaks into lower layers, 149 

before the higher-level processing has been completed. In an interactive system, information that 150 

has cascaded to lower layers also feeds back to higher levels and influences processing in those 151 

layers. Levelt et al.'s (1999) model3 does not allow cascading or interactivity and, consequently, is 152 

an example of a modular model, whereas Dell's (1986) modle1 is a prime example of an interactive 153 

model. Figure 1a shows principles of cascading and interactivity when the speaker successfully 154 

produces the target “cat”. Cascading is reflected in the activation of some of the phonology of the 155 

competing lexical items that were not ultimately selected (e.g., /d/ for dog)171. This is not expected 156 

in a model without cascading, because phonological activation only starts after a lexical item has 157 

been selected. Interactivity is shown in the activation of the lexical item “mat” through feedback 158 

from its segments /æ/ and /t/96,172,173.  159 

Several behavioral and neural findings now support non-modular models. For example, when 160 

participants named a picture as a couch, they were nevertheless faster at reading the following 161 

probe "soda", which was related to the alternative label sofa, compared to an unrelated word171. 162 

This finding shows cascading because to prime "soda", participants must have activated the 163 

alternative label (sofa) down to at least its phonological representations, even though they 164 

obviously did not select it at the lexical level. Similarly, cascading between phonemes and 165 

articulatory-phonetic features was supported by the finding that segmental errors (e.g., /k/ → /g/) 166 

had a voice onset time somewhere between target and error phonemes, showing that the articulated 167 
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product was a blend of the two phonemes174. Interactivity has also found support in a number of 168 

behavioral findings, including the mixed error effect1, the lexical bias effect175 cf.,176, and the 169 

repeated phoneme effect1,34. Neural data tell a similar story. Manipulating semantic similarity has 170 

effects on later processes, up to articulation, and manipulating segmental similarity affects earlier 171 

processes through feedback60.  172 

Although the evidence cited above supports non-modular systems, they should not be taken as 173 

support against distinct processing stages177 for two reasons. First, due to the mostly arbitrary 174 

mapping between semantic features and sounds of words, a single-stage mapping achieved by 175 

direct connections from individual semantic features to individual sounds is not possible. Also, 176 

even the behavioral and neural evidence that supports cascading and feedback points to a system 177 

that retains some modularity60,164. The modularity debate is not just of abstract theoretical interest5; 178 

it has important consequences for the application of theoretical models to new data. For example, 179 

interpreting EEG components or fMRI activity as reflecting a specific process based on a timeline 180 

derived from a serial (modular) model31,178 can be problematic, because such an approach neglects 181 

the fact that the current component/neural region is influenced by processing in layers before and 182 

after it (see179 for a critical review of this approach and its problems).  183 

 184 

The main model from the motor speech tradition is Guenther’s directions into velocities of 185 

articulators (DIVA) and its later version, gradient order DIVA or GODIVA2,36,37. The model is 186 

essentially a forward model of motor control (Fig. 1c). Forward models predict the consequences 187 

of motor commands through internal simulations of movements38–40. The model starts by 188 

activating the sound of a word in the speech sound map. A speech motor command is sent to the 189 

articulators to produce the word. Simultaneously, the perceptual consequences of this motor 190 
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command are anticipated in the form of auditory and somatosensory predictions. Once the word 191 

has been spoken, the actual perceptual auditory and somatosensory consequences are compared to 192 

the anticipated ones. If there are any discrepancies, an error signal is generated, which is used by 193 

an inverse model to adjust future motor movements. DIVA and its variants explain a wide range 194 

of findings in the acoustic-articulatory part of the language production system. These include 195 

learning to produce novel sounds and adjusting speech based on altered auditory or somatosensory 196 

feedback, as well as disorders that affect sublexical representations, such as stuttering and apraxia 197 

of speech41–44. Moreover, these models have allowed for a detailed neural mapping of speech 198 

planning and execution processes to both cortical and subcortical regions4,45,46. 199 

To date, no computational model has preserved the sophistication of GODIVA’s account of 200 

articulation in a model that also addresses psycholinguistic issues, such as lexical access from 201 

meaning, but some models have incorporated elements from both. An example is Hickok’s (2012) 202 

hierarchical state feedback control model47. The model is similar to DIVA in assuming that 203 

perception controls production but changes the starting point from the speech sound map to the 204 

psycholinguistic concept of lemma3. The lemma hierarchically activates syllables and phonemes, 205 

each of which have their own perceptual control loops (auditory and proprioceptive, respectively). 206 

However, unlike DIVA, the hierarchical state feedback control model does not depend on overt 207 

consequences of action. Rather, lemma activation is hypothesized to activate both motor and 208 

perceptual representations, with the former suppressing the latter. A correct production of the target 209 

extinguishes the activation of the target’s perceptual representation, but an error fails to do so, 210 

leading to the generation of an error signal. In proposing an internal check process independent of 211 

overt perceptual feedback, the model appeals to psycholinguistic notions such as “inner speech”48, 212 

while maintaining a core assumption of motor speech theory, i.e., the reliance of the speech 213 
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production system on the perceptual system. However, the model does not implement the first 214 

stage of processing, i.e., semantic-to-lexical mapping.  215 

As shown in this brief overview, psycholinguistic models pay much attention to the coactivation 216 

of representations, while motor speech models highlight the interaction between perception and 217 

production systems. In the next section, I will review how this differential emphasis can be 218 

leveraged for monitoring and control of the language production system.  219 

Monitoring  220 

As noted earlier, one of the strengths of motor speech models is that monitoring and control are 221 

integral to the production process. As seen in Fig. 1c, every act of production is accompanied by 222 

parallel activation of sensory representations that act as a “check” on production. Psycholinguistic 223 

models, on the other hand, do not pose an integral monitoring mechanism. Instead, for example, 224 

in Levelt et al.’s (1999) model, the language comprehension system is in charge of monitoring 225 

production. This account, called the “perceptual loop”49, is elegant in its assumption that the same 226 

system used for monitoring the speech of others, is also used for monitoring one’s own speech50. 227 

The proposal has an outer loop and an inner loop. The outer loop is simply speech comprehension, 228 

the contribution of which to monitoring can hardly be denied; we hear ourselves all the time and 229 

such prominent input can hardly be ignored. The nature of the inner loop has been long debated 230 

and criticized51–53. More recently, Roelofs (2020)54 has redefined the perceptual loop as 231 

connections between representations in the production system and their corresponding 232 

representations in the perceptual system. This redefinition makes the perceptual loop account more 233 

similar to that of speech motor models.  234 
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Monitoring production through perception works well when production and perceptual 235 

representations are distinct. This is certainly true for the lower post-lexical aspects of production 236 

(articulatory-phonetic representations) and perception (acoustic representations), and possibly also 237 

for phonology20,55. At higher layers of the production system, i.e., lemmas and higher (Fig. 1a), 238 

there is less motivation for, and evidence of, distinct production and perceptual representations. 239 

For example, it is unclear why there would be two sets of lemmas, one for perception and one for 240 

production, and even less clear why there would be two sets of semantic or syntactic features56,57. 241 

Yet, problems can also arise in those layers. One possibility is that higher-level representations are 242 

only monitored through the implementation of their sensory-motor representations.  This would 243 

imply that errors arising during semantic-to-lexical mapping (e.g., cat → dog) and those arising 244 

during lexical-to-phonological mapping (e.g., cat → dat) are both detected based on the same 245 

sensory-motor representations. However empirical evidence suggests a double dissociation in the 246 

detection of semantic and phonological/phonetic errors, as well as distinct neural correlates for 247 

monitoring these two error types52,58,59. Also, EEG studies in both linguistic and non-linguistic 248 

tasks have revealed an early negativity (too early to be compatible with sensory-motor 249 

comparisons) in trials with a higher, compared to lower, error likelihood60,61. It thus seems that 250 

speakers are equipped with a mechanism to detect the likelihood of an error early on, perhaps 251 

before it has even occurred. One way to model the early detection of errors is the conflict 252 

monitoring account.  253 

The conflict monitoring account52,61,62 proposes that production errors are detected by indexing the 254 

level of conflict in the activation of competing representations. When one item is much more 255 

activated than others, conflict is low, and so is the probability of an error (Fig. 2). Conversely, 256 

when two or more items have comparable activation levels, conflict is high, and errors are more 257 
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likely. Importantly, conflict monitoring can happen at any stage of production, and is not bound to 258 

sensory-motor representations. Also, it can be easily implemented in psycholinguistic activation 259 

models, which emphasize the coactivation of competing alternatives.  260 

But what level of conflict should be considered “high”? Answering this question requires using a 261 

decision-making framework. Figure 2a shows the application of signal detection theory’s (SDT)63 262 

framework to the distribution of conflict for correct and error trials. SDT has been one of the most 263 

influential theories in psychology. In its original form (SDT-I), it contains distributions of signal 264 

and noise and models decisions attributing a stimulus to one of these two distributions. Imagine 265 

being asked to detect a tone amid noise. Within SDT, your choice is affected by two parameters 266 

(Fig. 2a). Discriminability or d’ determines how separable the two distributions are. The higher the 267 

d’, the more accurate the choice. Criterion or c indicates a threshold (a point somewhere on the 268 

distributions) your system defines to label a stimulus as signal or noise. This results in four types 269 

of responses. If a stimulus belongs to the signal distribution and is above the criterion, it is correctly 270 

labeled as a signal (Hit). If the same is below the criterion, it is erroneously labeled as noise (Miss). 271 

Similarly, if a stimulus belongs to the noise distribution and is below the criterion, it is correctly 272 

labeled as noise (Correct Rejection). If the same happens to be above the criterion, it is mistakenly 273 

labeled as signal (False Alarm).  274 

SDT-II64 applies the same framework to metacognitive judgments. Now judgments are not on 275 

external stimuli but on cognitive choices themselves. In language production, instead of 276 

distributions of signal and noise, we have distributions of conflict for error and correct trials. D' 277 

depends on the state of the production system and the nature of the task. Healthy mature production 278 

systems have a high d’. Damaged (e.g., post-stroke), immature (e.g., child), or lightly trained (e.g., 279 

L2 speakers) systems have lower d’s52,65,66. This usually means that correct trials in these systems 280 
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are also associated with higher amounts of conflict, making the two distributions less 281 

distinguishable. Criterion c depends on task goals6. If accuracy matters, c is set conservatively 282 

(low misses at the cost of higher false alarms). If speed and fluency matter more, c is set liberally 283 

(low false alarms at the cost of higher misses). False alarms, although uncommon, can be observed 284 

in individuals with aphasia as changing a correct response into an error52,67, and in neurotypical 285 

speakers, as disfluencies68.  286 

 287 

 288 

 289 

 290 

 291 

 292 

Figure 2. The relationship between conflict and response selection. (a) Hypothetical distributions 293 

of conflict for correct and error trials, within the signal detection framework. D' reflects how 294 

cleanly separable the two distributions are. Criterion (c) can be put anywhere on the axis of 295 

conflict. Shifting c to the left makes behavior more conservative (fewer misses, more false alarms), 296 

whereas shifting c to the right makes behavior more liberal (fewer false alarms, more misses). (b) 297 

Change in conflict over time. A high-conflict trial can turn into a low-conflict trial over time 298 

(through spreading activation in neural networks or evidence accumulation in decision models). 299 

Conflict is inversely related to the difference between the activation of two (or more) items (x in 300 

the right-most figure). A competitive selection mechanism critically depends on reaching a certain 301 
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value of x (a relative threshold). Non-competitive selection only needs an absolute threshold, 302 

irrespective of x (green). 303 

For selection, the decision rule is: if conflict < c, then select; otherwise, wait (until conflict gets 304 

smaller with further spread of activation; Fig. 2b). For monitoring, the decision rule is: if conflict 305 

< c, then pass as correct; otherwise, detect as an error. The selection and monitoring rules only 306 

differ in when they apply, with selection tending to occur earlier. In an ideal world, conflict 307 

monitoring would always operate before selection, preventing all errors. However, this could lead 308 

to silences and pauses that speakers may wish to avoid, leading them to sometimes commit to 309 

responding before checks are complete. This would manifest as overt errors needing detection and 310 

repair, although the rate of overt errors remains low in healthy mature systems69. 311 

To summarize, applying SDT rules over distributions of conflict allows us to understand selection, 312 

monitoring, and error detection within the same framework. In a similar way, SDT can be used to 313 

determine the parameters of error detection within other frameworks, although the nature of the 314 

distributions depends on the information that those theories consider central to monitoring. Two 315 

issues merit further discussion: the first issue is whether selecting the word cat depend on how 316 

activated cat is per se, or how much more activated cat is compared to dog (Fig. 2b)? This question 317 

is at the heart of the mechanisms of lexical selection. The second issue concerns better 318 

computational approaches to understanding the first issue. Boxes 2 and 3 address these two points, 319 

respectively.  320 

[Boxes 2 and 3 about here] 321 

Towards a more comprehensive model of monitoring 322 
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There is an ongoing debate about which monitoring mechanism is the right one53,54. My own view 323 

is that language production is monitored through a combination of mechanisms. The original 324 

perceptual loop model assumes a conscious deliberate monitoring through the comprehension 325 

system49. Despite attempts at dialing back the role of conscious awareness in the more recent 326 

versions of the perceptual loop54, I think the emphasis on conscious and deliberate processing is 327 

actually a great asset of the original theory. It affords monitoring a place for taking into account 328 

the speaker’s broader knowledge of the world. In fact, the role of deliberate monitoring extends to 329 

monitoring the audience for signs of incomprehension and actively using world knowledge and 330 

common ground to facilitate communication.  331 

Complementing these conscious processes are implicit mechanisms that have the advantage of 332 

being fast and effortless. Forward models are excellent candidates for this purpose at the sublexical 333 

level, i.e., for the detection of phonological/phonetic errors or adjusting acoustic properties of 334 

speech70–74. Classic forward models like DIVA, however, monitor the overt consequences of 335 

behavior, precluding them from detection of potential errors. Moreover, speakers can detect errors 336 

in their silent, unarticulated inner speech, which has no overt perceptual consequences48. In these 337 

cases, detection mechanisms such as those proposed in the hierarchical state feedback control 338 

model or conflict monitoring provide a better explanation. Finally, models that hinge on sensory-339 

motor interactions are not the best candidates for monitoring more abstract representations, while 340 

empirical evidence shows that such representations can indeed be monitored. Conflict monitoring 341 

proposes a solution for these cases. Note that both forward models and conflict monitoring follow 342 

the same fundamental principle of using information to predict the outcome. As such, rather than 343 

thought of as opposing theories, they may be better conceived of as complementing theories. Box 344 

4 discusses these theories within the broader umbrella of the reinforcement learning theory75. 345 
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Box 2. Is lexical selection competitive or not?  346 

When we intend to say cat, does it matter how activated dog is? Much research has shown that 347 

increasing semantic similarity, especially taxonomic similarity (cat/dog), between a target and its 348 

context interferes with production (see 179,180for reviews). Many such claims hinge on results from 349 

the picture-word interference (PWI) paradigm181, where participants must name a picture ignoring 350 

a distractor word that usually appears in written form on top of the picture. PWI has been 351 

criticized23,182 for its many complexities such as multimodal processing that inevitably involves 352 

other systems (e.g., reading) and the need for suppressing a prepotent response, which is not the 353 

norm in speaking. However, semantic interference has also been robustly demonstrated in other 354 

paradigms, such as blocked cyclic naming183 where participants repeatedly name a small set of 355 

items, and its more ecologically valid variant, continuous naming, where people simply name a 356 

sequence of pictures17,177. For decades, such interference was taken as evidence for “competitive 357 

lexical selection”3,21,24,184. The idea is that lexical selection can only proceed after a relative 358 

threshold, i.e., a minimum difference between the activation of target and competitor(s), has been 359 

reached (x in Fig. 2b). Opposing this idea, some researchers showed that production can be 360 

facilitated in semantically similar contexts, especially for thematic relations (bone/dog). This 361 

finding was taken as evidence for “non-competitive lexical selection”23,185,186. The idea here is that 362 

an item can be selected as soon as it passes an absolute threshold, without being affected by the 363 

activation of competing representations (see Fig. 2b).  364 

Three points are noteworthy regarding this debate. First, while some computational models 365 

explicitly depend on competitive selection to explain interference and facilitation (e.g.,24 and 366 

variations), others do not8,9,144. Importantly, the latter type relies on incremental learning 367 

mechanisms to explain these effects8,9,144,172,187. One such mechanism is error-based learning9. 368 
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When cat is the target of production, its shared semantic features with dog also activate the word 369 

dog. At the end of production, error-based learning mechanisms strengthen the connections 370 

between the target (cat) and its semantic features while simultaneously weakening the connections 371 

between the competitor (dog) and the features it shares with the target. This learning mechanism 372 

facilitates the retrieval of cat when it next becomes the target (i.e., repetition priming188), but 373 

interferes with a subsequent production of dog. A similar mechanism can explain interference in 374 

segmentally related contexts172,187. Adopting the learning account has two advantages: (a) it 375 

explains the longevity of interference induced by contextual similarity17,183. Note that other 376 

learning models that do not weaken the competitor’s connections can explain long-term priming, 377 

but do not explain long-term interference without additional mechanisms188. (b) When combined 378 

with a more accurate representation of semantic relationships, it naturally accommodates the 379 

seemingly disparate facilitation and interference effects induced by thematic and taxonomic 380 

relations, respectively, which have been previously taken to imply mutually exclusive selection 381 

rules. Specifically, combining incremental learning mechanisms with the gradual activation of 382 

themes, captures thematic facilitation and taxonomical interference, irrespective of whether the 383 

model’s selection rule is set to competitive or non-competitive8.  384 

The second point worth noting is that the models that explain similarity-induced interference via 385 

learning do not necessarily deny the existence of mechanisms that impose some degree of 386 

competitive selection, such as lateral inhibition. In fact, given the prevalence of inhibitory 387 

interneurons and lateral inhibition in cognitive systems189,190, it would be strange to insist that the 388 

language production system is devoid of such connections. Acknowledging lateral inhibition 389 

naturally implies some competition in the system, which also motivates and constrains the use of 390 

measures such as conflict (i.e., conflict is not just measured between any two arbitrary 391 
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representations, but between those with mutual inhibitory effects). However, the existence of 392 

lateral inhibition does not automatically endorse competitive selection accounts. It is theoretically 393 

possible to have lateral inhibition and still select a representation before lateral inhibition has 394 

driven down the competition below a fixed value of x (Fig. 2b), which brings me to point 3. 395 

The third noteworthy point is that the debate assumes a dichotomy: Selection is either competitive 396 

or not. My own view is that such a binary view is incompatible with the workings of a highly 397 

adaptive goal-oriented system such as language production6,7. I believe that the concept of a 398 

relative threshold x is useful, but this threshold can vary to ignore or highlight competition 399 

depending on the situation and task goals191. For example, imagine I am talking to a friend about 400 

the chance of rain in the afternoon, and the words "likelihood" and "probability" both come to my 401 

mind. I would output either one quickly to keep the conversation going, knowing that the slight 402 

difference in meaning would not alter my message. This is the equivalent of setting a low value of 403 

x for the relative threshold. However, if I am teaching statistics and these two words come to mind, 404 

I would pause and deliberate to make sure one is the clear winner for the concept I am about to 405 

express. This is the equivalent of setting a high value for x. Importantly, I can change x flexibly as 406 

my goals for speed vs. accuracy change. This is the idea of a flexible criterion6,7,191.  407 

 408 

Box 3. Beyond SDT 409 

While SDT provides a simple and useful framework for understanding the relationship between 410 

conflict, selection, and error detection, other kinds of decision models can also be applied to 411 

language data and have certain advantages over SDT. An example is evidence accumulation 412 

models (EAMs)192,193. I have dedicated a box to them here because (a) they have already been used 413 
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to model certain aspects of language processing167–169, so it is important to be aware of some of 414 

their basic features, and (b) they can be an excellent tool for examining competitive vs. non-415 

competitive selection mechanisms (Box 2).  416 

Similar to SDT, they model choice based on evidence, but they also consider time, allowing 417 

evidence to accumulate gradually. The parameters of EAMs can be estimated through the 418 

quantitative fitting of choice-response time distributions. Similar to d’ and c in SDT, EAM’s drift 419 

rate and response threshold parameters are related to the quality of evidence, and the selection 420 

criterion, respectively. Mapped onto the lexical selection process, drift rate is akin to how quickly 421 

and strongly lexical items gain activation from semantic features. Response threshold is set by the 422 

selection rule. Given the close correspondence between EAM’s parameters and dynamics of 423 

activation and selection, these models appear to be a good tool for examining the mechanisms of 424 

lexical selection. But which model is appropriate model for this purpose?  425 

EAMs come in many different flavors. Some, like the linear ballistic accumulator (LBA)194 and 426 

racing diffusion model (RDM)195, are inherently non-competitive, i.e., evidence for one choice is 427 

not evidence against another. In contrast, other variants such as the diffusion decision model 428 

(DDM)196 are inherently competitive, with evidence for one choice always counting as evidence 429 

against the other. Fully competitive models like the DDM are often limited to binary choices 430 

(although extensions to multiple choices do exist197), whereas accumulator and racing diffusion 431 

models more naturally accommodate multiple choices. At first glance, it appears that none of these 432 

models is well-suited for addressing the issues raised in the selection debate (Box 2): being limited 433 

to two choices is incompatible with the many linguistic choices faced by speakers, and utilizing 434 

models that naturally accommodate more choices means committing, a priori, to non-competitive 435 

selection.  436 
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However, while these models are sometimes used in their simplest form, they can also be used as 437 

building blocks for more complex models. For example, although LBA is not inherently 438 

competitive, competition can be introduced into the model in several ways. One such way is to set 439 

up the accumulators to represent relative information, e.g., the presence of one stimulus over 440 

another198. Another way is to build inhibitory connections between the accumulators199 (see also 441 

leaky competing accumulator200). The resulting models can capture competition effects without 442 

being restricted to two choices. Customized modeling of competition as inhibitory weights has an 443 

additional advantage: the inhibition parameter (i.e., the value(s) of the inhibitory weights) can vary 444 

freely and continuously. This continuity allows the model to go beyond a binary competitive/non-445 

competitive distinction, and capture graded competition effects, something that fully competitive 446 

models like the DDM cannot do. Such an approach is well-suited for investigating mechanisms of 447 

lexical selection and criterion setting, including the degree of competitiveness, its timeline during 448 

the evidence accumulation process201, and its possible fluctuations across individuals, conditions, 449 

and even trials.  450 

Despite this clear promise, challenges remain in applying EAMs to language data. For example, 451 

EAMs usually require a large amount of data to generate stable and recoverable parameters. 452 

Moreover, assumptions such as a constant rate of evidence accumulation within a trial, often made 453 

in the LBA, are probably too simplistic for the complex production process. Luckily, many such 454 

issues are also of great interest to decision scientists, and new solutions are being continuously 455 

investigated. For example, new Bayesian approaches allow for better fits and model-check routines 456 

with sparser data202, and a newer variant of LBA employs a non-stationary process of evidence 457 

accumulation203.  458 
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In short, EAMs are promising models for studying a range of issues related to selection, 459 

monitoring, and control in language production, however, their application to linguistic data can 460 

be complicated. This challenge can be overcome by a closer collaboration between language and 461 

decision scientists, and will likely benefit both fields.  462 

 463 

Box 4. Reinforcement learning, conflict monitoring, and forward models 464 

Are conflict monitoring and forward models in opposition to one another? In my mind, these are 465 

not mutually exclusive theories. In fact, both fit quite well within a broader framework of a more 466 

general, well-implemented, and biologically plausible theory of human behavior, the 467 

reinforcement learning (RL) theory75. RL’s main claim is that humans learn from the consequences 468 

of their behavior; positive outcomes reinforce a behavior, whereas negative outcomes discourage 469 

the behavior. This framework is naturally well-suited to monitoring, as the point of performance 470 

monitoring is precisely to ensure that desired outcomes are reached. Hierarchical versions of RL 471 

can include a sequence of actions to model complex tasks, e.g., cooking a meal. Such models allow 472 

the agent to predict the final outcome from earlier stages. A model-free RL simply links actions 473 

with rewards. In a model-based RL, some internal representation of an action is used to predict 474 

action outcomes. Below, I will discuss how conflict monitoring and forward models of language 475 

monitoring fit the framework of model-based hierarchical RL. 476 

Many of the just criticisms raised against conflict monitoring take issue with “the brain as a conflict 477 

detector”204 (see 81for a review). A good example of this is the debate between RL and conflict 478 

monitoring on the role of the anterior cingulate cortex (ACC)61,204. Both theories can explain the 479 

ACC-generated EEG marker of error commission, the error-related negativity (ERN). Conflict 480 
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monitoring also explains an earlier EEG signature (N2)61 observed in high-conflict trials, 481 

regardless of their outcome, but has been criticized for not explaining a late EEG signature in 482 

response to external feedback204. One way to tackle this is to show that a neurobiologically 483 

plausible computational model of RL generates a pattern that is well-aligned with the predictions 484 

of conflict monitoring, showing that the two are not in opposition205. However, and much more 485 

importantly, conflict monitoring, at least as I am using it in this paper, is fundamentally not a theory 486 

about neural processing. Nor does it mean to replace memory and learning processes206. It simply 487 

proposes computations predictive of performance outcomes that are themselves products of 488 

learning, memory, and other cognitive processes (see a similar dissociation between quantum 489 

computation and quantum brain207).  490 

Insofar as conflict computations are good outcome predictors, the theory is useful. For example, 491 

we have shown that conflict is a reliable index of a language system’s health and maturity, which 492 

in turn predicts the probability of speech errors52,65. Naturally, if a situation is created in which 493 

conflict is irrelevant or conversely related to performance outcomes, there is no good reason to 494 

expect conflict monitoring to be useful, but the main point is that such situations are not the norm 495 

in cognitive systems. Moreover, conflict monitoring is successful precisely because it presupposes 496 

a trained internal model (e.g., semantic → lexical item → phonology → articulatory phonetics, in 497 

case of language production), shaped systematically and hierarchically such that information in 498 

earlier stages is predictive of the final outcome, exactly as presumed by model-based RLs. 499 

However, the theory does not specify how such a hierarchy has come to be. 500 

Forward models provide mechanistic explanations for how hierarchies of actions are shaped 501 

through feedback from their sensory consequences (hence my emphasis on the integral role of 502 

“learning” in these models). Once formed, the models predict the consequences of motor 503 
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commands through internal simulations of movements38,39, as in model-based RL.  The idea of 504 

internal simulations of performance used as predictions is well-supported in biological 505 

sensorimotor control40. The key issue in applying these models to language production is 506 

implementation. A useful model makes precise and testable predictions. This is the case for 507 

DIVA/GODIVA, which I have discussed in some detail in this paper. Other proposals exist for 508 

expanding the role of forward modeling to all layers of the production system208, but this model 509 

has been justly criticized for its ambiguity and lack of clear testable predictions209. An 510 

implementation of such models, if successful, would be a valuable contribution to the language 511 

monitoring literature.  512 

In short, conflict monitoring and forward models, as computational rather than neural theories, 513 

both hinge on predictive processing and outcome evaluation within a task hierarchy, which is the 514 

tenet of the hierarchical model-based RL. Opposition only arises when conflict monitoring is taken 515 

as a core mechanism operating regardless of performance outcome, in which case, the theory loses 516 

its sense and value. Also, note that the neural circuitry underlying reward processing in RL theories 517 

includes regions like the medial prefrontal cortex210 and cerebellum211. As such, uncovering the 518 

involvement of these regions in language monitoring is not unique support for forward models, 519 

but is compatible with any model that works within the RL framework. 520 

In summary, I believe that language is monitored through multiple mechanisms, including 521 

conscious deliberate processes that adjust communication based on speaker’s world knowledge 522 

and their goals, as well as implicit and largely subconscious processes that use a variety of 523 

information at different stages to predict performance outcome. This multi-process monitoring 524 

view53,76 finds support in empirical evidence, such as bimodal distribution of latencies related to 525 

error detection77 and distinct neural signatures for errors detected with full and partial sensory 526 
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feedback78. It is also compatible with computational models of error detection79, and is aligned 527 

with the well-known redundancies in monitoring other functions. An example is gait and posture80. 528 

The control of normal gait and posture taps into multiple channels of information, including 529 

somatosensory, visual, and vestibular sensations. When deviating from the routine, e.g., walking 530 

on rough terrain, additional processes are required for gait adjustment. These include cognitive 531 

processes that represent the agent’s knowledge of their body and motion in space. Importantly, 532 

certain parts of the neural circuitry underlying gait and posture control, such as the cerebellum, are 533 

involved in all processes that control gait, similar to what has been argued in Box 4 for language 534 

monitoring. Luckily, recent advances in the closer integration of monitoring processes with core 535 

production processes means that attempts to merge psycholinguistic and motor speech models will 536 

also bring together various monitoring mechanisms and nudge us closer to the implementation of 537 

the multi-process monitoring view.  538 

 539 

Control  540 

Monitoring provides valuable information, but such information is only useful when it can be used 541 

to regulate the production system. I refer to this as cognitive control or simply “control”. Generally 542 

speaking, cognitive control refers to operations that allow humans to behave flexibly in a goal-543 

directed manner81. Several taxonomies have been proposed, of which Miyake’s division of these 544 

functions into prepotent response inhibition, task shifting, and working memory updating is 545 

probably the most well-known82. But this taxonomy was based on experimental tasks already 546 

identified as tapping cognitive control, which leaves many real-life situations undefined. For 547 

example, what about the inhibition of highly activated competitors in language production? Do we 548 

need cognitive control to suppress “dog” when meaning to say “cat”? Is an agreement error like 549 
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“The snake next to the brown lions are green.” due to the failure of inhibitory control? Errors 550 

resulting from competition of a co-activated representations can be identified at all levels of 551 

language production, and there has been a movement in the field to link them to failures of 552 

inhibitory control 67,83–87. This leaves open the question: is there a single “domain-general” 553 

inhibitory control ability underlying all tasks and domains? 88–92. Alternatively, control may be 554 

specific to domain and even task 22,93,94. This is the question I will address in this section. 555 

Is all inhibitory control the same? 556 

Competition between the target and competitors in the language production system can create one 557 

of two scenarios: (a) cases where the stimulus-driven (bottom-up) information is sufficient to 558 

arrive at the correct response, and (b) cases where such information alone leads to the incorrect 559 

response. An example of (a) is naming a picture (e.g., dog) after having named a similar picture 560 

(e.g., cat)95–98. Although the similarity creates interference (Box 2), the information provided by 561 

the stimulus, i.e., the current picture, is aligned with the task goal of naming that picture. An 562 

example of (b) is Stroop-like tasks, where a prepotent response must be suppressed in favor of a 563 

less potent response, for example when for social reasons, one must produce a flattering word to 564 

describe a disliked object. Here, the stimulus-driven information would lead the speaker to utter a 565 

word that is incompatible with the task goal of being polite. Figure 3a shows an example of these 566 

two situations, implemented within an experimental paradigm with only two items per block (e.g., 567 

cat/dog)60,97. In one condition, the task goal is to name the current picture, but the similarity 568 

between the current and the previous item creates behavioral interference (see Box 2). In another 569 

condition, the task goal is to reverse the names of the two pictures (i.e., say cat when you see the 570 

dog and vice versa), creating a Stroop-like effect. While both situations can trigger the monitor to 571 
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detect an increased need for control, there are both theoretical and empirical reasons to doubt that 572 

they recruit comparable control mechanisms.  573 

 574 

 575 

 576 

 577 

 578 

 579 

 580 

 581 

 582 

 583 

 584 

 585 

Figure 3. Control implementation. (a) Task-dependency of control. On the left, the task is to name 586 

the current picture. External control (blue arrows) is optional because it will push processing in 587 

the same direction as bottom-up information (red arrow). On the right, the task is to use the other 588 

label for naming the current picture. Since bottom-up information is insufficient to arrive at the 589 

correct response external control is necessary. (b) Traditional view and (c) Learning view of 590 

cognitive control (adapted from145). Both accounts assume domain-generality in neural correlates 591 
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of central control (red circles), but different mechanisms for control implementation, and therefore 592 

different predictions regarding domain-generality in application. See text for details. 593 

Theoretically, external control is not required to achieve the goal when bottom-up information 594 

biases processing towards the correct response. When the goal is to name the current picture “cat” 595 

(Fig 3a, left), spreading activation from cat’s semantic features activates the word “cat”. As the 596 

word “cat” gains more activation, the local inhibitory link to the word “dog” suppresses the latter 597 

(lateral inhibition). If “dog” is very active, this suppression may take some time, but has a high 598 

likelihood of ultimately ending in the correct response. Now imagine a Stoop-like situation, where 599 

the stimulus is the same, but the speaker’s goal is to say “dog” (Fig 3a, right). The dynamics 600 

explained above will not achieve this goal; the speaker will end up saying “cat”, as shown in by 601 

the red arrow. In such a case external control is required to bias processing based on the task goal99 602 

(blue arrow mapping the stimulus to the goal-directed lexical representation). In short, the 603 

implementation of external control is essential for producing the correct response in one case, but 604 

not the other, pointing to possibly distinct control mechanisms in these two situations.  605 

In keeping with this theoretical division, behavioral evidence shows that the magnitude of 606 

interference in the contextual similarity task is sensitive to the layer in which competition is 607 

induced (semantic vs. phonological), but the magnitude of Stroop-like interference is not60,86,97. 608 

This finding points to a more local inhibitory mechanism in the former than the latter case. Neural 609 

evidence is also generally aligned with this position. Both situations activate medial PFC, such as 610 

the anterior cingulate cortex (ACC), which is known to be involved in monitoring100–104, however, 611 

lateral PFC, which is often considered to implement control in collaboration with ACC, is 612 

consistently implicated in Stroop-like tasks, but not in tasks that manipulate contextual 613 
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similarity103,105,106. Further highlighting the differences in these control mechanisms are findings 614 

of distinct electrophysiological signature for Stroop-like and similarity-induced interference60.  615 

In short, task demands and their relation to stimulus-driven information determine whether lateral 616 

inhibition between local representations (e.g., middle and inferior temporal gyrus; MTG, ITG for 617 

lexical representations32,107,108) is sufficient to resolve the conflict or whether central control 618 

(through regions such as the prefrontal cortex or PFC) is required. This distinction does not mean 619 

that external control cannot possibly be involved in situations where bottom-up cues are sufficient. 620 

In such cases, external control can still help facilitate faster response generation by strengthening 621 

stimulus-response associations in such conditions91,109–111, but this involvement is not necessary in 622 

the same way as in Stroop-like tasks. The optional involvement of external control for optimizing 623 

performance in such cases explains why PFC is sometimes implicated in tasks that manipulate 624 

semantic similarity, and sometimes not, whereas MTG and ITG are implicated much more 625 

consistently103,106,108,112. 626 

The discussion above showed that not all situations with high competition require external control. 627 

But are tasks that do require external control, e.g., varieties of Stroop-like tasks, controlled by a 628 

domain-general control mechanism? Here, I find it useful to define “domain-generality” more 629 

carefully113,114. Domain-generality can have multiple facets. Evidence suggests that processing 630 

principles are often domain-general, as long as they are not inherently incompatible with the nature 631 

of certain representations115. For example, the principle of performance adjustment after 632 

encountering a high-conflict trial applies equally well to both linguistic and non-linguistic 633 

domains116–118. Neural representations can also be domain-general, in the sense that they may carry 634 

out the same set of computations over representations in different domains. Association cortex and 635 

certain subcortical regions have been implicated as candidates for domain-generality of control 636 
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90,119–124. The real question, however, is whether domain-generality in computations and neural 637 

correlates translates to domain-generality in application.  638 

Domain-generality in application assumes that because the same population of neurons is involved 639 

in mediating control across two tasks, activating that population through increasing control 640 

demands in one task will lead to the better implementation of control in the other task88,125. An 641 

extension of this account through merging it with neuroplasticity126 predicts that training control 642 

using one task should improve the implementation of control in other tasks127,128. Empirical 643 

evidence for domain-generality in application has been mixed, with some papers claiming transfer 644 

of control from one task to another, mostly in language comprehension125,129–131, whereas the bulk 645 

of studies from the cognitive control literature point to task and domain-specific control93,99,132–138.  646 

In short, in terms of general principles and neural correlates, cognitive control shows evidence of 647 

domain-generality across linguistic and non-linguistic domains. However, there is an active debate 648 

on the domain-generality of cognitive control in application. I will discuss this controversy in light 649 

of a new theory of cognitive control, the “learning account”, in the next section.   650 

The learning account of control 651 

Before I explain the learning view, I will say a few words on what motivates the learning view of 652 

control. As explained earlier, while the main psycholinguistic models of language production do 653 

not incorporate learning as a core feature, much evidence suggests that they should. The evidence 654 

comes from the success of smaller models in explaining various behavioral effects through 655 

incremental learning. For example, several studies have shown that adult speakers rapidly and 656 

implicitly learn new phonotactic and orthotactic constraints embedded in strings of nonwords that 657 

they recite11,55,139–142 (see143 for a review). Integrating learning mechanisms into production also 658 
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provides an elegant explanation for facilitation and interference effects of contextual 659 

similarity8,9,144 as explained in Box 2. In short, a growing body of evidence suggests that 660 

action/production and learning are inseparable. This is the idea behind the learning account of 661 

control.  662 

Figures 3b and 3c contrast the traditional and learning views of cognitive control99,145,146. Note that 663 

both views accept the domain-generality of neural correlates of control92,123 (red circles). However, 664 

they make opposite predictions regarding domain-generality in application. The traditional account 665 

assumes that the key element of control is the activation of the control region. Once activated 666 

through any task, this activation benefits the current task, but since it is separate from the task 667 

itself, it can also benefit any other task, regardless of the overlap between the two tasks129,131. In 668 

contrast, the learning view posits that the key element in control implementation is the 669 

strengthening of the connections between the control center and task-specific representations. 670 

Since these connections are, by definition, task-specific (Fig. 3c, red connections), no benefit is 671 

expected for a new task. If anything, certain learning rules, such as error-based learning could even 672 

predict a disadvantage for the new task (i.e., reverse adaptation)22, as its connections to the control 673 

region could get weaker according to such learning rules (see Box 2 for a parallel explanation of 674 

similarity-induced interference). 675 

The learning account, similar to the traditional account, predicts within-task adaptation. This 676 

means that increased control demand in the current trial increases control implementation in the 677 

subsequent trials of the same task116. But the learning account makes two unique predictions: (a) 678 

since learning is, by definition, long-lasting, within-task adaptation should be resilient against the 679 

passage of time and intervening trials. (b) Recruitment of control for one task should lead to null 680 

or reverse cross-task adaptation in a different task. Both findings have empirical support in the 681 
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cognitive control literature in general99,147,148 and in language production, in specific22,149. It is 682 

worth noting that small positive cross-task adaptations130,131 are not incompatible with the learning 683 

account, especially if mechanisms such as Hebbian learning are considered: at the end of a 684 

successful trial, all active mappings are reinforced. Therefore, if both sets of stimulus-response 685 

mappings across the two tasks and their connections to the control center are simultaneously 686 

activated, there is a possibility to observe small positive effects. However, this effect is expected 687 

to be inconsistent and weak, as it is usually not possible to keep the mappings of one task fully 688 

active while performing another task, hence the ubiquity of switch costs150.  689 

To summarize, the learning account of cognitive control is both theoretically motivated and well-690 

supported by two critical aspects of data on adaptation, its longevity and its largely domain and 691 

task-specific nature. This accounts maintains that, in terms of functional application, control is 692 

largely domain-specific. This position is incompatible with brain training programs, which aim to 693 

improve a cognitive function (e.g., language after stroke) through training working memory and 694 

cognitive control in the context of different tasks and domains113,151.  695 

Repair 696 

A repair refers to the replacement of one response with another, e.g., “Please pass me the salt… I 697 

mean the pepper.”. Compared to other aspects of language production, repair processes have 698 

received little attention, cf. 66,77,152. The little empirical research that exists on the topic shows three 699 

key properties: (1) At least some repairs can be extremely fast, with as little as 0 ms between 700 

stopping the production of the error and initiating the repair153,154. (2) Repairs are seen in children 701 

as young as 2 years of age who are unable to consciously explain whether and why there was a 702 

repair155,156. Even in adults, repairs are not always accompanied by conscious awareness157. (3) 703 

Repairs do not seem to depend on accessing, or even recognizing, the correct target. For example, 704 
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a speaker may repair one error with another error, showing that access to the correct target is not 705 

necessary for repairs. Even more interestingly, when the correct target is part of the repair, it may 706 

go unrecognized as the target. For example, in an attempt to name the picture of an “orange”, an 707 

individual with aphasia produced a string of responses “apple, pineapple, pumpkin, orange, 708 

pineapple, peach?”, not realizing that the correct target has been produced 66. In short, repairs can 709 

be very fast, and largely independent of a conscious comparison with a correct target.  710 

The mechanisms underlying linguistic repairs have remained largely obscured. Given the close 711 

link between monitoring and repair, it is reasonable to expect that repairs reflect some properties 712 

of monitoring. For example, it has been shown that error detection follows a bimodal distribution, 713 

most likely reflecting the workings of internal vs. external monitoring mechanisms. 714 

Correspondingly, repairs also show an early and a late distribution77. Moreover, as discussed in the 715 

multi-process monitoring view, certain mechanisms are better suited for detecting certain types of 716 

errors, causing differences in detection and repair of semantic and phonological/phonetic 717 

errors52,59,79. But my goal in this section is to focus on a more fundamental issue: where do repairs 718 

come from and how do they replace the error?  719 

I will first propose a basic account that captures these properties. I will then augment this basic 720 

account with a conflict-based monitoring-control loop158, to propose an adaptive model of repairs 721 

that captures more elaborate findings. The current proposal focuses on lexical repairs (replacing 722 

one word with another word), but its general principles can be readily extended to cover other 723 

types of linguistic repairs as well.  724 

The basic repair model 725 
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An important debate about the nature of the repair process is whether, upon the detection of an 726 

error, the production process is started from scratch159,160, or is continued in some fashion without 727 

a restart 66,152. The latter position is desirable for a number of reasons; it is more easily reconciled 728 

with the very fast timeline of some repairs, it is cognitively less demanding, and most importantly, 729 

it is compatible with the natural consequences of language production, i.e., the co-activation of 730 

target and competitors. As such, a basic repair model can easily harness the basic dynamics of a 731 

model of language production. Here, I propose a basic model of repair as a time-based variant161 732 

of the Foygel and Dell’s (2000) model18. In this time-based variant, activation dynamics are closer 733 

to evidence accumulation models (Box 3), i.e., they start from zero and grow over time with 734 

spreading activation, allowing for a more accurate representation of changes over time. Two ideas 735 

are behind the basic model.  The first is the notion that conflict is generally higher in error vs. 736 

correct trials, discussed earlier in the Monitoring section. The second is the notion of continued 737 

processing past the point of response61,162. The basic repair model works by a simple respond-&-738 

check mechanism. At time t, a response is made by selecting the most active representation, but 739 

processing continues a little longer, up to time t+1, when the system makes a second selection by 740 

the same rule. If the selected item matches the original selection, nothing is changed. If it does not, 741 

the second selection replaces the first one (an additional utility of post-processing is determining 742 

confidence in response162).  743 

Figure 4a shows this process. On correct trials (the majority of trials), conflict is consistently low 744 

throughout the trial (left panel), therefore, the selected item at the times of response and check is 745 

often the same (correct) response, leading to high confidence and no change. On error trials, 746 

conflict is, on average, higher. If a response is selected before the system has had time to resolve 747 

the conflict, the first selection may be an error (right panel). However, time often resolves conflict 748 
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in favor of the correct response (see also Fig. 2b), making the second selection the correct response. 749 

Repairs implemented through the respond-&-check process can be fast, because the repair has 750 

been processed all along152. They are also largely subconscious, because the check mechanism is 751 

the same implicit activation-based mechanism used for selection. Finally, they are independent of 752 

a standard correct response. For example, if the competition is between two or more 753 

representations, any one of them can get selected during the check process, regardless of its 754 

correctness, allowing the model to explain false alarms of the kind observed in individuals with 755 

aphasia, including the example given earlier in this section (see also 52).  756 

The adaptive repair model 757 

The basic model thus accounts for the three main properties of repairs; it is fast, it does not require 758 

conscious processing or a correct target. However, it has no mechanism to adapt to difficult 759 

situations. Current findings suggest that when the probability of an error increases, so does the 760 

probability of a repair50,66. This finding has the same flavor as within-task adaptation, discussed in 761 

the Control section. I will thus tackle this problem by situating the basic repair model in a 762 

monitoring-control loop triggered by conflict (see also Gauvin & Hartsuiker, 2020, for a similar 763 

proposal)158,161. Figure 4b shows this adaptive model. The input activates the semantic features, 764 

and subsequently, lexical representations, where the respond-&-check mechanism is implemented. 765 

Conflict is continuously monitored at this level, providing the system with an average of conflict 766 

over all trials, weighted more heavily towards the most recent trial(s). If the average conflict 767 

around the time of the first selection (response) surpasses a certain threshold, control is recruited 768 

to boost the correct semantic-lexical mapping for the second selection (check). The higher the 769 

conflict level, the larger the boost. This results in a higher proportion of repairs in more error-prone 770 

situations, compatible with the empirical findings161.  771 
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To recap, the adaptive repair model harnesses the basic dynamics of psycholinguistic models, 772 

combines it with conflict-based monitoring and control, and uses insights from the decision-773 

making literature on threshold setting and post-response processing. This allows the model to 774 

explain the three basic properties of repairs mentioned earlier. Moreover, the model implements 775 

the notion of learning by computing a weighted average of conflict over many trials to be used as 776 

the regulating signal. This allows the model to explain the increase in repair rates in the face or 777 

higher error rates. Moreover, the learning mechanism can accommodate both sustained control, as 778 

well as trial by trial, fluctuation in control needs163. I must note that this proposal is quite new, and 779 

thus open for testing. Future studies and empirical data will determine how well this model will 780 

fare and what needs to be changed. Also, I hope that this proposal inspires alternative proposals 781 

that may fare even better than the current model. 782 

 783 

 784 

 785 

 786 

 787 

 788 

 789 

 790 

 791 

 792 



37 
 

Figure 4. The repair model changing the error “dog” to the correct response “cat”. (a) The 793 

respond-&-check mechanism in the basic model for a correct trial (left) and an error trial (right). 794 

Reselection of the response in the former leads to high confidence and no additional action. In the 795 

latter, the changed outcome of selection triggers the replacement of the prior response with a 796 

repair. (b) The adaptive repair model. The basic repair process of respond-&-check is situated 797 

within a monitoring and control loop triggered by a weighted average of conflict. Red indicates 798 

greater activation than orange. 799 

 800 

Is there an “ideal” model? 801 

Throughout the paper, I have discussed the differences between psycholinguistic and motor speech 802 

models, and how these differences bear on how language production is monitored and regulated. 803 

In this final section, I will tackle the question of "an ideal" model. Is an ideal model a "mega-804 

model" that combines the models from the two traditions? As Geroge Box famously said, “All 805 

models are wrong, but some are useful.”. Therefore, the question of an ideal model may be better 806 

phrased as the question of a useful model. Many of the existing models are useful for understanding 807 

a target phenomenon. For example, if the purpose is to test whether non-competitive selection is 808 

compatible with behavioral interference, a simple model with basic representations and an error-809 

based learning mechanism does the job9. However, if the purpose is to explain both taxonomically-810 

induced interference and thematically-induced facilitation within the same system, then the model 811 

needs to have a more sophisticated representation of the semantic space8. More complex models 812 

explain more data but are also harder to implement and understand. Therefore, a "mega-model" is 813 

only motivated if one really needs to model the whole production chain from beginning to end. 814 
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On the one hand, behavioral and neural data, as well as computational implementations, have 815 

pointed to a globally modular, locally interactive system60,164. This means that cascading and 816 

feedback affect the adjacent layers much more than distant layers. If so, we may not need a mega-817 

model. For example, perhaps going up to the lexical level could be perfectly sufficient for 818 

modeling articulatory processes. On the other hand, some aspects of production will be left out by 819 

this approach. For instance, focused elements in linguistic messages tend to be acoustically 820 

prominent165. This finding links semantic representations to articulatory ones at the two ends of 821 

the production system. A model with a narrower scope will simply miss some of the relevant 822 

representations or must speculate on how processing takes place among those representations. 823 

More generally, if we are to understand the regulation of the language production system through 824 

hierarchical model-based RL theory (Box 4), we must train models that map the entire process. 825 

This approach is critical for assessing whether such a framework applies to a highly generative 826 

system like language production. Moreover, it allows us to better understand the kinds of 827 

information used in earlier stages to assess a final outcome166. 828 

In short, I believe some principles like cascading of activation, interactivity, co-activation of 829 

similar representations, speaker’s goals especially in terms of emphasis on speed vs. accuracy, and 830 

implicit learning must always be considered when modeling a certain linguistic phenomenon. On 831 

the other hand, the scope of model’s representations depends on the purpose of modeling. For 832 

certain claims to be verifiable, a mega-model is indeed necessary. 833 

Conclusion 834 

My goal in this paper was to combine insights from different traditions of language production 835 

research, as well as advances in other fields of cognition, to propose new directions for research 836 

on word production. I will summarize the conclusions in four points, together with their potential 837 
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contribution to future directions. The first two points are focused on specific mechanisms. The last 838 

two points are broader takeaways.  839 

1. A multi-process monitoring view. Motor speech and psycholinguistic traditions differ in some 840 

of the mechanisms they propose for monitoring and control of language production. These 841 

differences do not necessarily hint at a problem with one approach or the other. Rather, they likely 842 

reflect important differences in the nature of representations that are the focus of each tradition. 843 

Therefore, instead of choosing the “right” monitoring mechanism, a more fruitful approach could 844 

be to view monitoring as a multi-mechanism process. Embracing the multi-process monitoring 845 

view shifts the focus of future research to important open questions, such as the relative 846 

contribution of various mechanisms to monitoring different aspects of language production, the 847 

kind of information used for monitoring at different stages of processing, and better ways of 848 

leveraging the complementary role of these mechanisms for rehabilitation after brain damage.  849 

2. A repair mechanism embedded in the monitoring-control loop. The adaptive repair model, 850 

proposed here, takes the idea of continued processing past the selection point and embeds it within 851 

the same conflict-driven monitoring-control loop that controls the primary production process. 852 

This account is parsimonious, because control is always applied the same way, but depending on 853 

how quickly it takes effect it may either prevent an error or facilitate a repair. This model, however, 854 

is in its nascency. Many issues remain open to investigation such as the timeline of conflict 855 

monitoring during a trial, as well as the correct functions for weighting the recency of conflict and 856 

scaling of control.  857 

3. Learning and production as one. For reasons stated in this paper, I believe that learning plays 858 

a critical role in correctly understanding a range of behavioral findings from rapid adjustment to 859 

new constraints to facilitatory and inhibitory effects of contextual similarity, to control and repair 860 
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processes. Fortunately, psycholinguistic models lend themselves well to the integration of learning 861 

mechanisms such as error-based and Hebbian learning. Future work should consider the power of 862 

learning accounts in explaining new phenomena, even when such phenomena seem to have little 863 

to do with learning in its pedagogical sense.  864 

The implementation of learning mechanisms should not be restricted to the inner workings of the 865 

language production system, but should also extend to its interactions with other systems. A 866 

broader picture is emerging in the cognitive control literature pointing to the tight link between 867 

action and learning. An example is the learning view of cognitive control94,145,146. This view 868 

predicts that domain-generality in the neural underpinnings of control actually leads to domain-869 

specificity in the application of control, and is supported by evidence from both language 870 

production and non-linguistic tasks. Embracing this view and its application to language 871 

production is an excellent step towards answering more nuanced questions, such as how the 872 

parameters of such learning are set in different populations and under different circumstances. 873 

4. Language production studied within a decision-making framework. Much of the discussion 874 

in the current paper draws on principles and mechanisms from fields of cognition other than 875 

language. I have shown how applying SDT to distributions of conflict for correct and error 876 

responses can introduce useful concepts such as criterion setting into debates of selection and 877 

monitoring. This framework can also be applied to information used by other accounts. Other 878 

decision making models have also been used and have advantages over SDT167,168. But there are 879 

also challenges in applying such models to the complex, non-linear process of word production169 880 

(Box 3). Resolving these challenges is only possible with a closer collaboration between language 881 

and decision scientists, but it is an effort with a high payoff for both fields.  882 
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