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Abstract 

Perception changes rapidly and implicitly as a function of passive exposure to speech that 

samples different acoustic distributions. Past research has shown that this statistical learning 

generalizes across talkers and, to some extent, new items but these studies involved listeners’ active 

engagement in processing statistics-bearing stimuli. In this study, we manipulated the relationship 

between voice onset time (VOT) and fundamental frequency (F0) to establish distributional regularities 

either aligned with American English or reversed to create a subtle foreign accent. We then tested 

whether statistical learning across passive exposure to these distributions generalized to new items 

never experienced in the accent. Experiment 1 showed statistical learning across passive exposure but 

no generalization of learning when exposure and test items shared the same initial consonant but 

differed in vowel (bear/pear → beer/pier) or when they differed in initial consonant but shared 

distributional regularities across VOT and F0 dimensions (deer/tear → beer/pier). Experiment 2 showed 

generalization to stimuli that shared the statistics-bearing phoneme (bear/pear → beer/pier), but only 

when the response set included tokens from both exposure and generalization stimuli. Moreover, 

statistical learning transferred to influence the subtle acoustics of listeners’ own speech productions but 

did not generalize to influence productions of stimuli not heard in the accent. In sum, passive exposure 

is thus sufficient to support statistical learning and its generalization, but task demands modulate this 

dynamic. Moreover, production does not simply mirror perception: generalization in perception was not 

accompanied by transfer to production.  
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Encountering a talker with an idiosyncratic speaking style or a non-native accent can diminish 

speech comprehension (e.g., Bradlow & Bent, 2008). But experience often leads to improvements that 

generalize to other contexts (e.g., Xie & Myers 2017). Sometimes, such encounters even impact subtle 

characteristics of one’s own speech (e.g., Pardo et al., 2017). Although instances of such adaptation 

and convergence are well documented, many questions regarding their bases remain unanswered.  

A literature examining dimension-based statistical learning provides a means with which to fill 

these gaps (e.g., Idemaru & Holt, 2011; Liu & Holt, 2015; Schertz, Cho, Lotto, & Warner, 2016; Wu & 

Holt, 2022). This work posits that subtle differences across talkers can be characterized as shifts in the 

underlying acoustic regularities – the statistical distributions – of speech. The somewhat different 

speech patterns of American English compared to Scottish English (Escudero, 2001), for example, can 

be modeled as distribution shifts across multidimensional acoustic space, and the impact of listening 

across these distributions on perception (as well as production) can be tracked.  

Such distributional shifts can be studied experimentally. For example, Idemaru and Holt (2011) 

selectively sample beer-pier utterances across an acoustic space defined by voice onset time (VOT, 

the timing of articulators’ release versus voicing onset) and fundamental frequency (F0, related to pitch). 

A Canonical sampling mirrors the F0xVOT distributions typical of American English: utterances with 

short VOT tend to have low F0 and be heard as /b/ whereas those with long VOT tend to have higher 

F0 and be heard as /p/. American English adults’ perception mirrors these regularities, with VOT serving 

as a strong cue to /b/-/p/ category identity and F0 contributing to a lesser extent (Wu & Holt, 2022). 

Reversing this correlation creates a subtle accent. In a passive exposure version of the paradigm 

(Hodson et al., 2023; Murphy et al. 2024), listeners hear a sequence of beer and pier utterances 

conveying one of these distributional regularities followed by one of two F0-differentiated test stimuli 

with ambiguous VOT. With only F0 available to convey category identity, test stimulus categorization 

indexes listeners’ reliance on F0 in speech categorization. In a pattern now well-replicated across many 

studies, F0 robustly signals beer versus pier when distributions mirror American English norms but F0 
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reliance is markedly reduced in the context of the accent (Holt, 2025). This points to implicit learning of 

statistical speech regularities that has an immediate influence on the mapping of acoustics to speech, 

thus informing how listeners adapt to idiosyncratic or accented speech.  

Generalization has been a valuable tool in examining the grain of representation across which 

this learning operates. For example, if learning operates across talker-specific representations, there 

should be no generalization to talkers not experienced in the accent. However, learning does generalize 

to new talkers (Liu & Holt, 2015). Likewise, generalization is evident across lexical items. For example, 

Idemaru and Holt (2020) report generalization across word contexts with differing vowels (beer-

pier→bear-pear, and vice versa) and differing vowel-consonant frames (beer-pier→bill-pill), although 

generalization effects were weaker than effects for the token experienced in the accent (see also Liu & 

Holt, 2015; Lehet & Holt, 2020; Zhang, Wu & Holt, 2021). In contrast, generalization is not apparent 

across the acoustic dimensions that convey speech regularities, like F0 and VOT. Idemaru and Holt 

(2014) find that beer-pier learning does not generalize to influence deer-tear although each samples a 

similar F0xVOT acoustic space. 

Collectively, these studies point to phoneme-sensitive learning. However, in contrast to the 

passive exposure paradigm described above (Hodson et al., 2023; Murphy et al. 2024), generalization 

studies have relied exclusively on active tasks with overt, trial-by-trial categorization of both statistics-

bearing “exposure” speech stimuli and the “test” stimuli that measure statistical learning and 

subsequent generalization. Correspondingly, in these prior studies, the response set includes 

responses that match the statistics-bearing speech (e.g., bear-pear) as well as responses to test 

generalization (beer-pier). This might be important. Wu and Holt (2022) observe that individual 

differences in the strength of category activation – as indexed by categorization accuracy for statistics-

bearing exposure stimuli – predict the magnitude of down-weighting of F0 upon introduction of the 

accent. If active categorization were to more robustly drive category activation than mere exposure, 

there may be task-driven learning and/or generalization outcomes. Hodson et al. (2023) examined this 
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possibility, finding common patterns of F0 down-weighting for active trial-by-trial categorization of 

exposure stimuli and passive exposure to them. Yet there remains an open question: is active 

categorization across statistics-bearing stimuli necessary for generalization? This paper tackles this 

question. 

Experiment 1 examines generalization of statistical learning across passive exposure with a 

single response set (beer-pier) across all conditions. Listeners hear a sequence of utterances 

conveying canonical or reverse distributions, then categorize sequence-final, F0-differentiated beer-

pier test stimuli across three conditions: No Generalization (beer-pier→beer-pier), same Phoneme 

Generalization (bear-pear→beer-pier, for which active categorization paradigms observe 

generalization), and same Dimension Generalization (deer-tear→beer-pier, for which no generalization 

is observed in active tasks). To anticipate the results, we replicate the null effect in the Dimension 

Generalization condition. But, unlike past studies, we do not observe generalization in the Phoneme 

Generalization condition in Experiment 1. In Experiment 2 we examine whether this difference arises 

from learning differences across passive exposure. We focus our investigation on exposure and test 

stimuli that share initial and final phonemes and introduce a mixed response set (beer-pier + bear-pear) 

in the critical condition. The mixed response set restores generalization, despite the passive exposure. 

As a secondary measure in each experiment, we elicit speech productions to attempt to replicate 

recently reported transfer of statistical learning from perception to production (Murphy et al., 2024) and 

to examine generalization in production.  To foreshadow, we robustly replicate Murphy and colleagues 

(2024) for statistics-bearing stimuli: the learning arising with perceptual experience with an accent 

transfers to impact listeners’ speech productions. Intriguingly, this transfer is limited to stimuli heard in 

the accent. Generalization in perception is not reflected in production. 
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Experiment 1 
 

Methods 

 
Experiment 1 examined statistical learning across passive exposure to speech regularities and 

its generalization. Participants listened to a sequence of speech tokens possessing a (Canonical, 

Reverse) short-term distributional regularity and reported whether a final test stimulus was beer or pier. 

They then heard the same test stimulus again and repeated it aloud (Figure 1). Test stimuli were always 

beer-pier, differentiated only by F0. Across conditions experienced by all listeners, the stimuli that 

conveyed distributional regularities across passive exposure varied: beer-pier (requiring No 

Generalization), bear-pear (Phoneme Generalization), deer-tear (Dimension Generalization). 
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Figure 1. Experiment Protocol. A. Stimuli. An acoustic space defined by voice onset time (VOT) and fundamental 

frequency (F0) conveyed beer-pier and bear-pear (solid blue, no line) and deer-tear (solid blue, aqua line) tokens sampled 
in a manner Canonical of American English or Reversed to convey an accent.  B. Trial Structure. A representative trial 

from the Experiment 1 Control condition illustrates the trial structure across each experiment, and all groups. C. Experiment 
Conditions. The speech tokens that convey the short-term speech regularity (Exposure, blue) and the test stimuli that elicit 
perception (Perception, red) and production (Production, gray) are depicted for each condition of each experiment. 

Participants 

In keeping with past studies, we assumed a small effect size of d=0.3 for generalization in speech 

perception (Liu and Holt 2015; Idemaru and Holt, 2020).  A power analysis performed using the program 

PANGEA (Westfall, 2015) indicated that a sample size of 90 participants would provide power > 0.8 to 

detect a three-way interaction between Test Stimulus F0, Canonical/Reverse statistical regularity and 

the three-level generalization factor, at α = 0.05. As a provision against data loss in online studies, we 

collected online data from 110 adult (55 females) native-English participants located in the United 

States. Eighteen participants’ data did not enter into analyses due to silent or highly noisy production 
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recordings that precluded acoustic analysis of speech productions (N=17) or perceptual responses 

indicating task noncompliance (N=1). Data from 92 participants (49 females, mean age 28.1 years, SD 

= 4.8 years) entered the analysis. 

Stimuli 

Figure 1A illustrates the speech stimuli. Fundamental frequency (F0) and voice onset time (VOT) 

varied, with other acoustic dimensions held constant, to create perceptual spaces corresponding to 

beer-pier, bear-pear, and deer-tear. Each of the six target words was spoken by an adult female native 

American English speaker, with specific tokens chosen to have similar duration (400 ms for beer-pier 

and deer/tear, 500 ms for bear-pear) and F0 contour. Beginning with these natural speech exemplars, 

we edited in the time domain to create 5-ms VOT steps (McMurray & Aslin, 2005). Next, we manipulated 

the F0 onset of each of these stimuli using a custom Praat script (Praat 6.1, Boersma & Weenink, 2023) 

such that onset F0 varied from 220 to 320 Hz in 10 Hz steps, with F0 contour interpolated smoothly 

across voicing to word offset. Amplitude normalization assured each stimulus possessed the same root 

mean-squared amplitude. 

Exposure stimuli (blue, Figure 1A) sub-sampled these acoustic spaces to create distinct short-

term speech regularities. The Canonical English sampling (Figure 1A, left) followed acoustic speech 

regularities typical of American English: stimuli with shorter VOT (<25 ms) tend to have lower F0 and 

be labeled as /b/ or /d/ (light blue) whereas those with longer VOT (>25 ms) tend to have higher F0 and 

be labeled as /p/ or /t/ (dark blue). A statistically defined ‘accent' reversed this distributional relationship  

from American English norms (Figure 1A, right). Here, for the Reverse condition, shorter VOTs signal 

/b/ or /d/ but F0 is higher frequency. Longer VOTs signal /p/ or /t/ but F0 is lower frequency. Beer-pier 

and bear-pear tokens (blue, no line) shared identical F0xVOT values whereas deer-tear tokens (blue, 

aqua line) sampled distributions shifted +5 ms in VOT to account for natural English VOT patterns (Cho 

& Ladefoged, 1999). 
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Additionally, two test stimuli possessed a perceptually ambiguous, 25-ms VOT and varied only 

in F0 (230 or 310 Hz; Figure 1A, red symbols). Test stimulus categorization measured listeners’ reliance 

on F0 in category decisions related to learning (when test stimuli match exposure stimuli, e.g., beer-

pier→beer-pier) and generalization (bear-pear→beer-pier and deer-tear→beer-pier). These same test 

stimuli elicited speech productions in the auditory repetition task. Exposure and Test stimuli were 

chosen on the basis of responses provided by nine raters and had been previously shown to drive 

statistical learning in perception (Murphy, 2024). 

Procedure 

Online participants recruited via Prolific.co were automatically directed to an experiment hosted 

on Gorilla (www.gorilla.sc, Anwyl-Irvine et al., 2021). Using the Chrome browser on a computer (no 

mobile devices), participants provided consent, completed a demographics survey, and underwent both 

a brief check of headphone compliance test (Milne et al., 2020) and a check that the computer 

microphone was recording utterances. 

Figure 1B shows the trial structure. Participants listened passively to a sequence of 8 

perceptually unambiguous exposure stimuli that conveyed either a Canonical or a Reverse short-term 

regularity. Each sequence included 4 tokens from each of the two distributions (Figure 1A, dark and 

light blue symbols), randomly selected and concatenated with 300-ms silent intervals separating 

utterances. Clipart images corresponding to the word expected from the perceptually unambiguous 

VOT appeared at the onset of each sound. Next, after 600 ms, participants heard one of the two test 

stimuli (High or Low F0; Figure 1A, red symbols) and categorized it as beer or pier via a keyboard 

response with onscreen text to guide the mapping. Then, 300 ms later, the same test stimulus played 

again, and an image of a microphone prompted participants to repeat the word aloud. Participants had 

2500 ms to repeat the test stimulus and utterances were saved digitally for subsequent acoustic 

analysis of F0.  
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As summarized in Figure 1C, beer-pier test stimuli elicited perceptual categorization responses 

and speech productions across each of three conditions. The statistics-bearing exposure stimuli of the 

No Generalization condition matched the beer-pier test stimuli, thereby measuring statistical learning 

without requiring generalization. In contrast, bear-pear exposure sequences in the Phoneme 

Generalization condition necessitated generalization of statistical learning to beer-pier test stimuli 

sharing a common initial phoneme. Finally, in the Dimension Generalization condition, the deer-tear 

regularities differed in initial phoneme from the beer-pier test stimuli but overlapped across F0xVOT 

acoustic dimensions.  

For each condition, participants experienced 30 Canonical trials followed by 30 Reverse trials. 

Among these, 24 of 30 stimuli involved exposure stimuli followed by one of the two beer-pier VOT-

ambiguous, F0-differentiated test stimuli described above; responses to these stimuli entered analyses. 

Six additional VOT-unambiguous stimuli served as a data-quality check of online participants, with a 

priori exclusion of participants who gave the same response to these unambiguous stimuli (no 

participants were excluded on this basis). Unambiguous beer, bear, and deer stimuli had a 230 Hz F0 

and 10ms VOT (deer: 15ms VOT) while unambiguous pier, pear, and tear stimuli has a 310 Hz F0 and 

40ms VOT (tear: 45ms VOT). As in prior studies (Wu & Holt, 2022), categorization of these perceptually 

unambiguous stimuli was consistent with expectations from English (Long VOT, 96% /p/; Short VOT, 

93% /b/).  A Latin square design assured balanced presentation of conditions across participants. 

Statistical Analyses 

Perceptual Categorization. We modeled the influence of statistical learning on perceptual 

categorization of test stimuli using mixed effects models (lme4, Bates, Mochler, Bolker, and Walker, 

2015) in R (version 4.1.3, R Core Development Team, 2022) with the binary (beer, pier) categorization 

response as the dependent variable. The full statistical model involved fixed effects across Statistical 

Regularity (Canonical, Reverse), Test Stimulus F0 (Low F0, High F0) and Condition (No Generalization, 
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beer-pier; Phoneme Generalization, bear-pear; Dimension Generalization, deer-tear) as well as 2- and 

3-way interactions. Random effects included by-subject random intercepts and random slopes for 

Statistical Regularity and Test Stimulus F0 over subjects. Statistical Regularity and Test Stimulus F0 

fixed effects were center coded (-0.5 or 0.5). A simple effects coding scheme was applied to the 3-level 

Condition effect whereby the No Generalization condition served as the reference level to which the 

Phoneme Generalization and Dimension Generalization conditions were compared. Three-way 

interactions among Statistical Regularity, Test Stimulus F0, and Condition were examined with post-

hoc tests of the Statistical Regularity by Test Stimulus F0 interaction for each Condition. Satterthwaite 

approximates using the LmerTest package (version 3.1-3, Kuznetsova, Brockhoff, & Christensen, 

2016) provided p values. 

Speech Production. Transfer of statistical learning in listening to repetition productions was 

modeled across by-participant z-score normalized utterance F0 (as in Murphy et al., 2024). In brief, the 

F0 (computed across the first 40 ms) was measured for each utterance. F0 values ±3 standard 

deviations from a participant’s mean F0 were removed from analysis. Next, we normalized F0 on a by-

individual basis to account for F0 variability arising across talkers (Titze, 1989). Therefore, for 

production analyses, a z-score of 0 indicates the mean F0 for a participant across all productions. 

Positive and negative z-scores correspond to continuous standard deviation units above and below the 

mean, respectively, that we submitted to standard linear effects models. Fixed and random effect 

structures, and the approach to post-hoc tests, were identical to perceptual statistical learning analyses. 

Results 

Perceptual Categorization  

Figure 2 presents perceptual categorization of F0-differentiated beer-pier test stimuli as a 

function in Canonical and Reverse conditions. Table 1 displays results of a logistic mixed effects model 

fit to these data.  
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Across all conditions, there were more pier responses for High F0, as is typical in American 

English (Lisker, 1986), reflected in a main effect of Test Stimulus F0 (z=17.52, p<.001) and a main 

effect of Statistical Regularity (z=17.53, p<.001). Importantly, these factors significantly interacted 

(z=15.43, p<.001), indicating that statistical learning across passive listening impacted reliance on F0 

in categorization.  

 

 

 

Figure 2. Experiment 1 Perception and Production Results. The top row depicts percent pier categorization responses 
to High and Low F0 beer-pier test stimuli in the context of Canonical and Reverse short-term regularities. The bottom row 
shows z-score normalized fundamental frequency (F0) of beer-pier speech productions elicited in repetition of High and 
Low F0 test stimuli in the context of Canonical and Reverse short-term regularities. A. No Generalization (beer-pier 
exposure, beer-pier test) B. Phoneme Generalization (bear-pear exposure, beer-pier test). C. Dimension Generalization 

(deer-tear exposure, beer-pier test). Larger symbols and thick lines represent sample mean and standard error. Smaller 
symbols and transparent lines indicate individual participants’ behavior.  
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Simple effects coding comparing perceptual responses from the No Generalization condition to 

responses from the Phoneme Generalization and Dimension Generalization revealed significant main 

effects (Phoneme: z=4.22, p<.001; Dimension: z=3.17, p=.002) indicative of an overall difference in 

perceptual response across conditions. Two-way interactions were significant between each condition 

and Test Stimulus F0 (Test Stimulus F0 by Phoneme: z=8.97, p<.001; Test Stimulus F0 by Dimension: 

z=7.48, p<.001) but not Statistical Regularity. Importantly, two significant three-way interactions 

indicated that perceptual down-weighting differs for both the Phoneme Generalization (z=-18.70, 

p<.001), and Dimension Generalization (z=-19.27, p<.001) conditions relative to the No Generalization 

condition. 

Based on these two significant three-way interactions, we tested statistical 

learning/generalization in each condition with separate, post-hoc logistic mixed effect models. The two-

way interaction between Test Stimulus F0 and Statistical Regularity was significant only in the No 

Generalization model (z=23.72, p<.001), but not the Phoneme (z=0.57, p=.567) or Dimension (z=0.94, 

p=.348) Generalization models. Thus, Experiment 1 reveals evidence of statistical learning but not of 

generalization of the learning. 

Table 1. Experiment 1 Perceptual Categorization of Test Stimuli across Conditions 

  β SE z p 

Intercept 0.22 0.08 2.74 .006 

Statistical Regularity 0.24 0.05 4.48 <.001 

Test Stimulus F0 2.40 0.14 17.53 <.001 

Phoneme Generalization 0.24 0.06 4.22 <.001 

Dimension Generalization 0.18 0.06 3.17 .002 

Statistical Regularity x Test Stimulus F0 1.45 0.09 15.43 <.001 

Statistical Regularity x Phoneme Generalization -0.10 0.11 -0.85 .396 

Statistical Regularity x Dimension Generalization -0.14 0.11 -1.28 .199 

Test stimulus F0 x Phoneme Generalization 1.01 0.11 8.97 <.001 

Test stimulus F0 x Dimension Generalization 0.83 0.11 7.48 <.001 

Statistical Regularity x Test Stimulus F0 x Phoneme Generalization -4.20 0.22 -18.72 <.001 

Statistical Regularity x Test Stimulus F0 x Dimension Generalization -4.28 0.22 -19.27 <.001 

Note: Reference levels are Statistical Regularity (Reverse), Test Stimulus F0 (Low F0), Condition (No 
Generalization). Phoneme Generalization and Dimension Generalization result from simple effects 
coding comparing the respective conditions to the No Generalization condition. 
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Speech Production  

Figure 2 shows z-score normalized F0 measured from participants’ beer-pier speech 

productions as a function of the Statistical Regularity. Table 2 provides results of the Linear Mixed 

Effects Model. 

Overall, speech productions elicited by the High (compared to the Low) F0 beer-pier test stimuli 

had higher F0 (t=15.35, p<.001). A significant two-way interaction between Test Stimulus F0 and 

Statistical Regularity (z=5.11, p<.001) indicated transfer of statistical learning to production.  Simple 

effects coding comparing production F0s from the No Generalization Condition to production F0s from 

Phoneme Generalization and Dimension Generalization revealed significant main effects of each 

Condition (Phoneme: z=7.05, p<.001; Dimension: z=5.10, p<.001). Significant two-way interactions 

were also evident between each Condition and Test Stimulus F0 (Test Stimulus F0 by Phoneme: 

t=6.56, p<.001; Test Stimulus F0 by Dimension: t=6.19, p<.001). As with the perceptual categorization 

results, two significant three-way interactions indicated that transfer of statistical learning to production 

differed in both the Phoneme Generalization (t=-5.65, p<.001) and Dimension Generalization (t=-6.74, 

p<.001) Conditions relative to the No Generalization Condition. Also similar to perception, the post-hoc 

analyses only revealed a significant interaction between Test Stimulus F0 and Statistical Regularity in 

the No Generalization condition (t=9.44, p<.001)1, but not in the Phoneme Generalization (t=0.87, 

p=.383) or Dimension Generalization (t=-0.82, p=.410) condition. 

The results are clear: perceptual statistical learning across passive exposure failed to generalize 

in perception. While this replicates the finding of no generalization in the Dimension Generalization 

(deer-tear→beer-pier) condition (Idemaru & Holt, 2014), it contrasts with Phoneme Generalization 

(bear-pear→beer-pier) observed in active tasks that involve trial-by-trial overt speech categorization 
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(Idemaru & Holt, 2020). Naturally, since no generalization was uncovered in perception, transfer of 

generalization was not seen in production. 

 
Table 2. Experiment 1 Speech Production F0 across Conditions 

  β SE t p 

Intercept 0.01 0.01 1.03 .302 

Test Stimulus F0 0.69 0.04 15.35 <.001 

Statistical Regularity 0.02 0.03 0.63 .533 

Phoneme Generalization 0.14 0.02 7.05 <.001 

Dimension Generalization 0.10 0.02 5.10 <.001 

Test Stimulus F0 x Statistical Regularity 0.16 0.03 5.11 <.001 

Test Stimulus F0 x Phoneme Generalization 0.26 0.04 6.56 <.001 

Test Stimulus F0 x Dimension Generalization 0.24 0.04 6.19 <.001 

Statistical Regularity x Phoneme Generalization -0.02 0.04 -0.47 .641 

Statistical Regularity x Dimension Generalization -0.06 0.04 -1.45 .148 

Test Stimulus F0xStatistical Regularity x Phoneme Generalization -0.44 0.08 -5.65 <.001 

Test Stimulus F0 x Statistical Regularity x Dimension Generalization -0.53 0.08 -6.74 <.001 

Note: Reference levels are Statistical Regularity (Reverse), Test Stimulus F0 (Low F0), Condition (No Generalization). 
Phoneme Generalization and Dimension Generalization result from simple effects coding comparing the respective 

conditions to the No Generalization condition. 

Experiment 2 

Methods 

Experiment 1 replicated the null effect of dimension generalization (Idemaru & Holt, 2014) but 

failed to find evidence of phoneme generalization, contrary to prior reports (Idemaru & Holt, 2020). One 

interpretation of these results is that statistical learning across passive listening is not sufficient to 

support generalization. But before this conclusion is drawn, we must rule out the influence of another 

factor. Recall that in Idemaru and Holt’s (2020) task, participants responded to all tokens, meaning that 

both the statistics-bearing stimuli and the generalization stimuli were part of the response set. If overlap 

between exposure and test stimuli is critical for extracting statistics or applying statistics to new stimuli, 

then a mixed response set should restore phoneme generalization, even with passive exposure. 

Experiment 2 tested this possibility. First, we aimed to replicate the main findings of statistical learning 

and its transfer to production, observed in Experiment 1, in a different pair, bear-pear. We used this 
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pair as exposure stimuli to test phoneme generalization to a different pair, beer-pier, presented in a 

mixed response set comprised of both bear-pear and beer-pier tokens with equal frequency. 

Participants  

Based on the power analysis of Experiment 1, we tested 95 participants (48 female) with 87 

participants (45 female, Mage = 31.3, SD = 6.0 years) entering analyses after application of the 

Experiment 1 exclusion criteria. 

Stimuli 

Experiment 2 relied on the beer-pier and bear-pear stimuli from Experiment 1 (Figure 1A). 

Procedure 

Experiment 2 consisted of 6 blocks (30 trials each) of trials alternating with Canonical and 

Reverse regularities. The first two blocks reproduced the No Generalization (beer-pier→beer-pier) 

condition of Experiment 1 (Replication: No Generalization). The remaining four blocks conveyed 

statistics across bear-pear utterances and involved both bear-pear (Mixed Response: No 

Generalization) and beer-pier (Mixed Response: Phoneme Generalization) test trials, randomly 

intermixed such that there was uncertainty about the target of categorization on each trial and the mixed 

response set involved beer, pier, bear, and pear. As in Experiment 1, in each block six VOT-

unambiguous trials assured online participants’ data quality; no participants were excluded on the basis 

of responses to these trials. Performance was high and consistent with English regularities (Long VOT, 

93% /p/; Short VOT, 88% /b/). Responses from these trials did not enter analyses, resulting in 24 

Canonical and 24 Reverse trials for each condition. 

Statistical Analyses 



 

 17 

Perceptual Categorization.  The statistical approach was similar to Experiment 1. Our first goal 

was to replicate statistical learning and its transfer to production in the No Generalization condition, 

observed in Exp 1. This model included the subset of data from the beer-pier→beer-pier blocks. The 

model included Test Stimulus F0 (High F0, Low F0), Statistical Regularity (Canonical, Reverse) and 

their interaction, as well as a maximal random effects structure consisting of by-subject random 

intercept, random slopes for Test Stimulus F0, Statistical Regularity, and the interaction between Test 

Stimulus F0 and Statistical Regularity over subjects. As in Experiment 1, Statistical Regularity and Test 

Stimulus F0 fixed effects were center coded (-0.5 or 0.5).  

Next, we examined generalization using blocks with Mixed Response conditions. The model’s 

dependent variable was coded as voiced (beer, bear) or voiceless (pier, pear). Three fixed effects, Test 

Stimulus F0 (High F0, Low F0), Statistical Regularity (Canonical, Reverse) and Condition (Mixed 

Response: No Generalization; Mixed Response: Phoneme Generalization), were included alongside 

their 2-way and 3-way interactions. The random effects structure was similar to the structure used in 

the Replication task analysis with the addition of a random slope for Condition. All fixed effects were 

centered coded (-0.5, or 0.5). 

 Speech Production. Acoustic speech analysis followed the Experiment 1 approach with by-

participant z-score normalized production F0s as a continuous dependent variable analyzed with linear 

mixed effects models. As with the perceptual categorization analysis, separate models assessed 

production changes in the Replication and the Mixed Response tasks. Fixed effects and their 

interactions were identical to those included in the corresponding perceptual categorization models. 

Both models included by-participant random intercept and random slopes for Test Stimulus F0 and 

Statistical Regularity. The Mixed Response model also included a random slope for Condition. Neither 

model tolerated the addition of random slopes for the interaction terms. All fixed effects were center 

coded (-0.5 or 0.5). 
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Figure 3. Experiment 2 Perception and Production Results. The top row depicts percent pier/pear categorization 
responses to High and Low F0 beer-pier (A, C) or bear-pear (B) test stimuli in the context of Canonical and Reverse short-

term regularities. The bottom row shows z-score normalized fundamental frequency (F0) speech productions elicited in 
repetition of these same test stimuli. A. Replication: No Generalization (beer-pier exposure, beer-pier test) is a replication 
of Experiment 1. B. Mixed Response Condition trials with No Generalization (bear-pear exposure, bear-pear test). C. Mixed 
Response Condition trials requiring Phoneme Generalization (bear-pear exposure, beer-pier test). 

Results 

Perceptual Categorization 

 As in Experiment 1, we analyzed perceptual responses for evidence of statistical learning and 

its generalization to novel tokens (Figure 3, top row). Analysis of perceptual responses from the 

Replication task revealed a significant main effect of Test Stimulus F0 (z=8.18, p<.001), a significant 

main effect of Statistical Regularity (z=2.00, p=.045) and, importantly, an interaction between the two 

(z=13.87, p<.001), showing statistical learning in perception.  
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Table 3 reports the results from the analysis of perceptual response from the Mixed Response 

blocks. A significant main effect of Test Stimulus F0 indicated that, overall, participants tended to 

perceive High F0 test stimuli as pier or pear and Low F0 as beer or bear (z=18.58, p<.001).  The main 

effect of Condition was also significant, indicating a difference in /b/ versus /p/ response rates in the 

Mixed Response: No Generalization and the Mixed Response: Phoneme Generalization conditions (z= 

-5.70, p<.001). This difference appears to be driven by a bias towards pier responses in the Mixed 

Response: Phoneme Generalization condition, a finding also reported by Idemaru & Holt (2020). A 

significant two-way interaction between Statistical Regularity and Test Stimulus F0 indicated statistical 

learning in perception in the Mixed Response blocks (z= 12.50, p<.001).  

There was also a significant three-way interaction between Statistical Regularity, Test Stimulus 

F0, and Condition (z=10.20, p<.001). To unpack this interaction, we fit separate post-hoc models to 

each of the two Conditions, separately. In the Mixed Response blocks, there is evidence of statistical 

learning in the form of a significant two-way interaction between Statistical Regularity and Test Stimulus 

F0 in both the No Generalization model (z=11.47, p<.001) as well as the Phoneme-Generalization 

model (z=3.49, p<.001).  

Table 3. Perceptual Categorization of Voiced/Voiceless Test Stimuli in Mixed Response Task 

  β SE z p 

(Intercept) 0.26 0.12 2.18 .029 

Statistical Regularity 0.02 0.08 0.21 .833 

Test Stimulus F0 2.78 0.15 18.58 <.001 

Condition -1.16 0.20 -5.70 <.001 

Statistical Regularity x Test Stimulus F0 2.23 0.18 12.50 <.001 

Statistical Regularity x Condition 0.18 0.13 1.38 .168 

Test Stimulus F0 x Condition -0.18 0.14 -1.23 .218 

Statistical Regularity x Test Stimulus F0 x Condition 2.72 0.27 10.20 <.001 

Note: Reference levels are Statistical Regularity (Reverse), Target stimulus F0 (Low F0), Condition (Phoneme-
Generalization) 
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Speech Production  

We next examined transfer of statistical learning to production using z-score normalized F0 

measured from beer-pier and bear-pear productions (Figure 3, bottom row). First examining the 

Replication condition, the model reveals the expected main effect of Test Stimulus F0 (t=9.55, p<.001), 

as well as a significant two-way interaction between Test Stimulus F0 and Statistical Regularity 

indicating the transfer of statistical learning to production (t=14.55, p<.001), thereby replicating the 

transfer observed in Experiment 12. 

Table 4 reports the transfer of speech production results from the Mixed Response blocks.  

Mirroring the perceptual results, the analysis revealed a main effect of Test Stimulus F0 (t = 13.64, p 

<.001), as well as a main effect of Condition on production F0s (t=-14.81, p<.001). The latter finding is 

in line with previous research on intrinsic F0, a tendency for high vowels like the /i/ in beer to have 

higher F0s than low vowels like the /e/ in bear (Chen et al. 2021; Whalen & Levitt, 1995). Transfer of 

statistical learning was evident in the significant two-way interaction between Statistical Regularity and 

Test Stimulus F0 (t=6.64, p<.001)3. There were significant interactions between Statistical Regularity 

and Condition (t=3.01, p=.003) as well as Test Stimulus F0 and Condition (t=-6.41, p<.001).  

Critical for our determining whether generalization transfers to influence speech production, we 

found a significant three-way interaction between Statistical Regularity, Test Stimulus F0, and Condition 

(t=4.63, p<.001). Post hoc analyses revealed that the two-way interaction between Test Stimulus F0 

and Statistical Regularity was significant in the Mixed Response: No Generalization model (t=8.18, 

p<.001) but the perceptual generalization observed for the Mixed Response: Phoneme-Generalization 

condition did not transfer to production (t=1.44, p=.151).   
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To summarize, Experiment 2 replicates statistical learning across passive exposure to beer-pier 

and its transfer to speech production. It extends this finding to bear-pear, when no generalization is 

required. Importantly, inclusion of a mixed response set rescued phoneme-level generalization of 

perceptual statistical learning, although with a smaller magnitude of influence on the generalization pair 

than the pair experienced across the regularity. This generalization of learning did not transfer to 

influence speech production. 

 

Table 4. Mixed Response Task Productions by Test Stimulus F0 and Condition 

  β SE t p 

(Intercept) -0.03 0.01 -2.34 0.021 

Statistical Regularity -0.04 0.03 -1.36 0.177 

Test Stimulus F0 0.60 0.04 13.64 <.001 

Condition -0.58 0.04 -14.81 <.001 

Statistical Regularity x Test Stimulus F0 0.24 0.04 6.64 <.001 

Statistical Regularity x Condition 0.11 0.04 3.01 0.003 

Test Stimulus F0 x Condition -0.24 0.04 -6.41 <.001 

Statistical Regularity x Test Stimulus F0 x Condition 0.34 0.07 4.62 <.001 

Note: Reference levels are Statistical Regularity (Reverse), Target stimulus F0 (Low F0), Condition (Phoneme-
Generalization) 

 

General Discussion 

Does generalization of statistical learning emerge only with learning in an active task? Potentially 

consistent with this possibility, Wu and Holt (2022) argued that when speech conveys sufficient 

perceptual information to activate a phonetic category (e.g., via unambiguous VOT) it may generate 

predictions of the typical mapping of other secondarily diagnostic acoustic dimensions, like F0, to the 

category representation. In the Reverse condition, these expectations are not met and the mismatch 

may power error-driven learning that down-weights F0 to minimize future mismatches. Inasmuch as 

active engagement in a categorization decision might boost category activation, it thus may promote 

learning and its successful generalization. Yet, Hodson et al. (2023) report statistically equivalent 

learning outcomes across passive exposure to statistics-bearing speech stimuli and active engagement 
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in a categorization decision across these same stimuli. This latter result suggests that learning across 

passive exposure may be just as potent as learning across stimuli that demand active categorization. 

Experiment 2 confirms that statistical learning across passive listening is sufficient to support 

generalization to stimuli never heard in the accent. Notably, this pattern was not evident in Experiment 

1. The difference was that in Experiment 2, a response set included both statistics-bearing and new 

stimuli with the same initial phoneme. This restored generalization of the learning that accrued across 

passive listening to the accent.  

But why should response set matter? Although speculative, the most reasonable explanation for 

the influence of response set on generalization may relate to attention and goal-setting, in line with 

recent findings that show the importance of explicit attentional goals in implicit statistical learning 

(Zhang & Carlisle, 2023). If participants detect no relationship between exposure and test stimuli, they 

may tune out exposure stimuli. Under this view, attention is important for learning not because it forces 

the learner to actively process each statistics-bearing stimulus, but rather because it sets a higher-level 

behavioral goal in the cognitive-perceptual system. Our results demonstrate the importance of task 

demands and goals in the context of statistical learning, even when it emerges implicitly across passive 

exposure. This argues for further research to examine how implicit and explicit task demands influence 

the nature of information learned across passive exposure. 

The present study also lays groundwork for understanding the structure of representation shared 

between speech perception and production. We replicated the transfer of statistical learning from 

perception to production reported in Murphy et al. (2024) twice (Experiment 1 and 2, beer-pier→beer-

pier). Additionally, the present work extends evidence of transfer to a novel word pair (Experiment 2, 

bear-pear→bear-pear). These results demonstrate that there are rapid and implicit changes to the 

production system as a result of statistical learning across the patterns of other talkers’ speech. They 

are interesting, particularly, in light of the finding that most instances of auditory repetition are carried 
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out through the “lexical”, as opposed to the “nonlexical” route (Nozari et al., 2010; Nozari & Dell, 2013). 

This means that upon hearing a word, the individual retrieves the corresponding stored lexical 

representation and activates the production chain, rather than simply mapping input to output 

phonology without fully engaging the production system. In our case, the perceptual judgment 

performed before production makes it even more likely for participants to use the lexical route. 

Nevertheless, we observe changes to production. This implies that the results do not reflect a simple 

imitation of the input. As such, the present data build from Murphy et al. (2024) to provide new insights 

into phonetic convergence (Pardo, 2022) and to extend how other talkers’ speech affects one’s own 

productions (e.g. Bourguignon et al., 2014; 2016; Lametti et al., 2014).  

Yet, even when bears affected beers in perception, they did not influence production. In 

Experiment 2, exposure to bear-pear distributional regularities led to statistical learning that generalized 

to beer-pier (with a mixed response set). But this learning did not exert an influence on production. The 

magnitude of generalization (bear-pear→beer-pier) was smaller than the magnitude of statistical 

learning across matched trials (bear-pear→bear-pear) so it is possible that generalization was not 

robust enough to drive transfer to production. Alternatively, representations subject to learning in 

perception may differ from those in production, as has been indicated by previous findings that show 

changes in production can occur independently of changes in perception (Sheldon & Strange, 1982; 

Kato & Baese-Berk, 2020; Baese-Berk et al., 2024). Future studies of transfer in dimension-based 

statistical learning are well-poised to address this intriguing possibility because the approach makes it 

possible to quantify listeners’ and speakers’ detailed reliance on subtle acoustic dimensions, and to 

manipulate exposure to distributions across them in both passive and active tasks. At this stage, 

observance of generalization of statistical learning in the absence of transfer to production is important 

in establishing that production is not simply a mirror of perceptual experience, according with other 

studies of statistical learning across speech production and perception (e.g., Kittredge & Dell, 2016; 
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Schwartz et al. 2012). Learning-related adjustments to the representations within the production system 

appear to be necessary.  

In conclusion, passive exposure is sufficient to produce generalization of statistical learning in 

perception, but subtle task demands affect generalization. Inasmuch as the utility of implicit statistical 

learning over passive exposure is its ability to impact behavior, this highlights how important it will be 

to direct research toward better understanding how statistical learning statistical learning supports, and 

is influenced by, task goals and demands. 
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